Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization


Eutectic gallium indium (EGaIn) is a liquid metal alloy at room temperature. EGaIn microdroplets can be incorporated into elastomers to fabricate highly stretchable, mechanically robust, soft multifunctional composites with high thermal stability1 and electrical conductivity2,3,4 that are suitable for applications in soft robotics and self-healing electronics5,6,7. However, the current methods of preparation rely on mechanical mixing, which may lead to irregularly shaped micrometre-sized droplets and an anisotropic distribution of properties8. Therefore, procedures for the stabilization of sub-micrometre-sized droplets of EGaIn and compatibilization in polymer matrices and solvents have attracted significant attention9,10,11,12. Here we report the synthesis of EGaIn nanodroplets stabilized by polymeric ligand encapsulation. We use a surface-initiated atom transfer radical polymerization initiator to covalently functionalize the oxide layer on the surface of the EGaIn nanodroplets13 with poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBMA), poly(2-dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(n-butyl acrylate-block-methyl methacrylate) (PBA-b-PMMA). These nanodroplets are stable in organic solvents, in water or in polymer matrices up to 50 wt% concentration, enabling direct solution-casting into flexible hybrid materials. The liquid metal can be recovered from dispersion by acid treatment. The nanodroplets show good mechanical, thermal and optical properties, with a remarkable suppression of crystallization and melting temperatures (down to −80 °C from 15 °C).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SI-ATRP from EGaIn and EGaIn-PMMA hybrid droplets.
Fig. 2: EGaIn–PBMA hybrid droplets and their tensile performances.
Fig. 3: EGaIn–PBA-b-PMMA thermoplastic elastomer.
Fig. 4: EGaIn–PDMAEMA water-soluble hybrid droplets and cationic gel-wrapped EGaIn.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. Bartlett, M. D. et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl Acad. Sci. USA 114, 2143–2148 (2017).

    Article  CAS  Google Scholar 

  2. Fassler, A. & Majidi, C. Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27, 1928–1932 (2015).

    Article  CAS  Google Scholar 

  3. Kramer, R. K., Majidi, C. & Wood, R. J. Masked deposition of gallium–indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013).

    Article  CAS  Google Scholar 

  4. Tabatabai, A., Fassler, A., Usiak, C. & Majidi, C. Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013).

    Article  CAS  Google Scholar 

  5. Palleau, E. et al. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589–1592 (2013).

    Article  CAS  Google Scholar 

  6. Blaiszik, B. J. et al. Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012).

    Article  CAS  Google Scholar 

  7. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 1, 618–624 (2018).

    Article  Google Scholar 

  8. Kumar, S. K., Benicewicz, B. C., Vaia, R. A. & Winey, K. I. 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50, 714–731 (2017).

    Article  CAS  Google Scholar 

  9. Finkenauer, L. R. et al. Analysis of the efficiency of surfactant-mediated stabilization reactions of EGaIn nanodroplets. Langmuir 33, 9703–9710 (2017).

    Article  CAS  Google Scholar 

  10. Farrell, Z. J. & Tabor, C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 34, 234–240 (2018).

    Article  CAS  Google Scholar 

  11. Hohman, J. N. et al. Directing substrate morphology via self-assembly: ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett. 11, 5104–5110 (2011).

    Article  CAS  Google Scholar 

  12. Boley, J. W., White, E. L. & Kramer, R. K. Mechanically sintered gallium–indium nanoparticles. Adv. Mater. 27, 2355–2360 (2015).

    Article  CAS  Google Scholar 

  13. Dickey, M. D. et al. Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    Article  CAS  Google Scholar 

  14. Yan, J. et al. A fatty acid-inspired tetherable initiator for surface-initiated atom transfer radical polymerization. Chem. Mater. 29, 4963–4969 (2017).

    Article  CAS  Google Scholar 

  15. Xu, Q. et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium–indium. Phys. Fluids 24, 063101 (2012).

    Article  Google Scholar 

  16. Konkolewicz, D. et al. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 5, 4396–4417 (2014).

    Article  Google Scholar 

  17. Chung, J. Y., Nolte, A. J. & Stafford, C. M. Surface wrinkling: a versatile platform for measuring thin-film properties. Adv. Mater. 23, 349–368 (2011).

    Article  CAS  Google Scholar 

  18. Brandrup J. et al. (eds) Polymer Handbook 4th edn (Wiley, 1999).

  19. Porter, R. S. & Johnson, J. F. The entanglement concept in polymer systems. Chem. Rev. 66, 1–27 (1966).

    Article  Google Scholar 

  20. Wahlander, M. et al. Tailoring dielectric properties using designed polymer-grafted ZnO nanoparticles in silicone rubber. J. Mater. Chem. A 5, 14241–14258 (2017).

    Article  Google Scholar 

  21. Johnston, I., McCluskey, D., Tan, C. & Tracey, M. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).

    Article  Google Scholar 

  22. Spontak, R. J. & Patel, N. P. Thermoplastic elastomers: fundamentals and applications. Curr. Opin. Colloid Interface Sci. 5, 333–340 (2000).

    Article  Google Scholar 

  23. Dufour, B., Koynov, K., Pakula, T. & Matyjaszewski, K. PBA-PMMA 3-arm star block copolymer thermoplastic elastomers. Macromol. Chem. Phys. 209, 1686–1693 (2008).

    Article  CAS  Google Scholar 

  24. Yan, J. et al. Matrix-free particle brush system with bimodal molecular weight distribution prepared by SI-ATRP. Macromolecules 48, 8208–8218 (2015).

    Article  CAS  Google Scholar 

  25. Dick, K., Dhanasekaran, T., Zhang, Z. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002).

    Article  CAS  Google Scholar 

  26. Wronski, C. R. M. The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731 (1967).

    Article  CAS  Google Scholar 

  27. Yamaguchi, A., Mashima, Y. & Iyoda, T. Reversible size control of liquid-metal nanoparticles under ultrasonication. Angew. Chem. Int. Ed. 54, 12809–12813 (2015).

    Article  CAS  Google Scholar 

  28. Rossa, L. & Vögtle, F. in Cyclophanes I Vol. 113 (ed Vögtle, F.) 1–86 (Springer, 1983).

  29. Mansfield, M. L., Douglas, J. F., Irfan, S. & Kang, E.-H. Comparison of approximate methods for calculating the friction coefficient and intrinsic viscosity of nanoparticles and macromolecules. Macromolecules 40, 2575–2589 (2007).

    Article  CAS  Google Scholar 

  30. Tsuda, K., Kobayashi, S. & Otsu, T. Vinyl polymerization. CXVI. The effects of several sulfides and oxides on radical polymerization. Bull. Chem. Soc. Jpn 38, 1517–1522 (1965).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support from the National Science Foundation (DMR 1501324, DMR-1709344 and CMMI-1663305) and the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (FA9550-18-1-0566; programme manager, K.Goretta). The authors also acknowledge the use of facilities in the Colloids, Surfaces and Polymer Laboratory at Carnegie Mellon, supported by grant no. CMU 678083-769798.

Author information

Authors and Affiliations



J.Y. and M.H.M. conceived and designed the experiments. J.Y. performed the synthesis and kinetic studies. J.Y., M.H.M. and Z.L. fabricated and characterized the materials. Z.W. performed the microscopic characterization. N.K. and C.P. were involved in discussions at various stages of the work. M.R.B., C.M. and K.M. supervised the work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Michael R. Bockstaller, Carmel Majidi or Krzysztof Matyjaszewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Malakooti, M.H., Lu, Z. et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14, 684–690 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing