Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators

Abstract

Monolayer transition metal dichalcogenides (TMDCs) have recently been proposed as an excitonic platform for advanced optical and electronic functionalities1,2,3. However, in spite of intense research efforts, it has not been widely appreciated that TMDCs also possess a high refractive index4,5. This characteristic opens up the possibility to utilize them to construct resonant nanoantennas based on subwavelength geometrical modes6,7. Here, we show that nanodisks, fabricated from exfoliated multilayer WS2, support distinct Mie resonances and anapole states8 that can be tuned in wavelength over the visible and near-infrared range by varying the nanodisk size and aspect ratio. As a proof of concept, we demonstrate a novel regime of light–matter interaction—anapole-exciton polaritons—which we realize within a single WS2 nanodisk. We argue that the TMDC material anisotropy and the presence of excitons enrich traditional nanophotonics approaches based on conventional high-index materials and/or plasmonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calculation of geometrical resonances in WS2 nanodisks and nanodisk fabrication.
Fig. 2: Experimental observation of Mie resonances and anapoles in WS2 nanodisks.
Fig. 3: Strong coupling between anapoles and excitons in WS2 nanodisks.

Similar content being viewed by others

Data availability

The data plotted in Figs. 1a–c,d, 2b–e and 3a–f can be accessed via Figshare repository via the link https://figshare.com/s/4b8abbb708335aee3cc5

References

  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  2. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  3. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  4. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  5. Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    Article  CAS  Google Scholar 

  6. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Lukyanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  7. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).

    Article  CAS  Google Scholar 

  8. Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).

    Article  CAS  Google Scholar 

  9. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  10. Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1296 (2017).

    Article  Google Scholar 

  11. Stührenberg, M. et al. Strong light–matter coupling between plasmons in individual gold bi-pyramids and excitons in mono- and multilayer WSe2. Nano Lett. 18, 5938–5945 (2018).

    Article  Google Scholar 

  12. Liang, W. Y. Optical anisotropy in layer compounds. J. Phys. C 6, 551 (1973).

    Article  CAS  Google Scholar 

  13. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  Google Scholar 

  14. Zenin, V. A. et al. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett. 17, 7152–7159 (2017).

    Article  CAS  Google Scholar 

  15. Savinov, V., Fedotov, V. A. & Zheludev, N. I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B 89, 205112 (2014).

    Article  Google Scholar 

  16. Papasimakis, N., Fedotov, V. A., Savinov, V., Raybould, T. A. & Zheludev, N. I. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15, 263–271 (2016).

    Article  CAS  Google Scholar 

  17. Powell, D. A. Interference between the modes of an all-dielectric meta-atom. Phys. Rev. Appl. 7, 034006 (2017).

    Article  Google Scholar 

  18. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  Google Scholar 

  19. Hsu, C. W., DeLacy, B. G., Johnson, S. G., Joannopoulos, J. D. & Soljačić, M. Theoretical criteria for scattering dark states in nanostructured particles. Nano Lett. 14, 2783–2788 (2014).

    Article  CAS  Google Scholar 

  20. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

  21. Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015).

    Article  Google Scholar 

  22. Baranov, D. G., Wersall, M., Cuadra, J., Antosiewicz, T. J. & Shegai, T. Novel nanostructures and materials for strong light–matter interactions. ACS Photon. 5, 24–42 (2017).

    Article  Google Scholar 

  23. Antosiewicz, T. J., Apell, S. P. & Shegai, T. Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling. ACS Photon. 1, 454–463 (2014).

    Article  CAS  Google Scholar 

  24. Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1983).

  25. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  CAS  Google Scholar 

  26. Santhosh, K., Bitton, O., Chuntonov, L. & Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016).

    Article  Google Scholar 

  27. Wang, H. et al. Resonance coupling in silicon nanosphere–J-aggregate heterostructures. Nano Lett. 16, 6886–6895 (2016).

    Article  CAS  Google Scholar 

  28. Lepeshov, S. et al. Tunable resonance coupling in single Si nanoparticle–monolayer WS2 structures. ACS Appl. Mater. Interfaces 10, 16690–16697 (2018).

    Article  CAS  Google Scholar 

  29. Liu, S.-D., Fan, J.-L., Wang, W.-J., Chen, J.-D. & Chen, Z.-H. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk–J-aggregate heterostructures. ACS Photon. 5, 1628–1639 (2018).

    Article  CAS  Google Scholar 

  30. Tiguntseva, E. Y. et al. Tunable hybrid Fano resonances in halide perovskite nanoparticles. Nano Lett. 18, 5522–5529 (2018).

    Article  CAS  Google Scholar 

  31. Yadgarov, L. et al. Strong light–matter interaction in tungsten disulfide nanotubes. Phys. Chem. Chem. Phys. 20, 20812–20820 (2018).

    Article  CAS  Google Scholar 

  32. Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photon. 6, 139–147 (2019).

    Article  CAS  Google Scholar 

  33. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Article  Google Scholar 

  34. Andres, C.-G. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Olle Engkvist Foundation, the Knut and Alice Wallenberg Foundation, Chalmers Excellence Initiative Nano and the Swedish Research Council (Vetenskapsrådet).

Author information

Authors and Affiliations

Authors

Contributions

D.B., R.V., M.K. and T.S. conceived the project, R.V. designed the experiment and fabricated the samples, D.B. developed the theoretical models and performed the simulations, B.M. and J.C. measured the optical response. All authors contributed to analysis of the results and writing the manuscript.

Corresponding authors

Correspondence to Mikael Käll or Timur Shegai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Andrea Alu and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verre, R., Baranov, D.G., Munkhbat, B. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019). https://doi.org/10.1038/s41565-019-0442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0442-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing