Article | Published:

A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability

Abstract

The generation of high-quality entangled photon pairs has been a long-sought goal in modern quantum communication and computation. So far, the most widely used entangled photon pairs have been generated from spontaneous parametric down-conversion (SPDC), a process that is intrinsically probabilistic and thus relegated to a regime of low rates of pair generation. In contrast, semiconductor quantum dots can generate triggered entangled photon pairs through a cascaded radiative decay process and do not suffer from any fundamental trade-off between source brightness and multi-pair generation. However, a source featuring simultaneously high photon extraction efficiency, high degree of entanglement fidelity and photon indistinguishability has been lacking. Here, we present an entangled photon pair source with high brightness and indistinguishability by deterministically embedding GaAs quantum dots in broadband photonic nanostructures that enable Purcell-enhanced emission. Our source produces entangled photon pairs with a pair collection probability of up to 0.65(4) (single-photon extraction efficiency of 0.85(3)), entanglement fidelity of 0.88(2), and indistinguishabilities of 0.901(3) and 0.903(3) (brackets indicate uncertainty on last digit). This immediately creates opportunities for advancing quantum photonic technologies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Nanotechnology thanks Weibo Gao, Alastair Sinclair and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).

  2. 2.

    Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

  3. 3.

    Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

  4. 4.

    Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, 2000).

  5. 5.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  6. 6.

    Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

  7. 7.

    Acin, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

  8. 8.

    Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995).

  9. 9.

    Scarani, V. et al. Four-photon correction in two-photon Bell experiments. Eur. Phys. J. D 32, 129–138 (2005).

  10. 10.

    Wang, X. L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

  11. 11.

    Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 072501 (2012).

  12. 12.

    Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  13. 13.

    Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).

  14. 14.

    Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

  15. 15.

    Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

  16. 16.

    Müller, M., Bounouar, S., Jöns, K. D., Gläss, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

  17. 17.

    Chung, T. H. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nat. Photon. 10, 782–787 (2016).

  18. 18.

    Orieux, A., Versteegh, M. A. M., Jöns, K. D. & Ducci, S. Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017).

  19. 19.

    Huo, Y. H., Rastelli, A. & Schmidt, O. G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 102, 152105 (2013).

  20. 20.

    Keil, R. et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 10, 15501 (2017).

  21. 21.

    Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 10, 15506 (2017).

  22. 22.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

  23. 23.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

  24. 24.

    He, Y.-M. et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017).

  25. 25.

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

  26. 26.

    Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012).

  27. 27.

    Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).

  28. 28.

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

  29. 29.

    Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

  30. 30.

    Davanco, M., Rakher, M. T., Schuh, D., Badolato, A. & Srinivasan, K. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl. Phys. Lett. 99, 041102 (2011).

  31. 31.

    Sapienza, L., Davanço, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015).

  32. 32.

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

  33. 33.

    Jöns, K. D. et al. Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality. Sci. Rep. 7, 1700 (2017).

  34. 34.

    Chen, Y., Zopf, M., Keil, R., Ding, F. & Schmidt, O. G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018).

  35. 35.

    Liu, J. et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 88, 023116 (2017).

  36. 36.

    Chen, Y. et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat. Commun. 7, 10387 (2016).

  37. 37.

    Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapors. Nat. Commun. 7, 10375 (2016).

  38. 38.

    Huber, D. et al. Strain-tunable GaAs quantum dot: an on-demand source of nearly-maximally entangled photon pairs. Phys. Rev. Lett. 121, 033902 (2018).

  39. 39.

    Jayakumar, H. et al. Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4251 (2014).

  40. 40.

    Stufler, S. et al. ‘Two-photon Rabi oscillations in a single InxGas1−xA/GaAs quantum dot’. Phys. Rev. B 73, 125304 (2006).

  41. 41.

    Kaniber, M. et al. Efficient and selective cavity-resonant excitation for single photon generation. New J. Phys. 11, 013031 (2009).

  42. 42.

    Stevenson, R. M. et al. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett. 101, 170501 (2008).

  43. 43.

    Ward, M. M. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).

  44. 44.

    Hudson, A. J. et al. Coherence of an entangled exciton–photon state. Phys. Rev. Lett. 99, 266802 (2007).

  45. 45.

    Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  46. 46.

    Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).

  47. 47.

    Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

  48. 48.

    Kaldewey, T. et al. Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage. Phys. Rev. B 95, 161302(R) (2017).

  49. 49.

    Troiani, F. Entanglement swapping with energy-polarization-entangled photons from quantum dot cascade decay. Phys. Rev. B 90, 245419 (2014).

  50. 50.

    Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mork, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photon. 11, 521–526 (2017).

  51. 51.

    Pathak, P. K. & Agarwal, G. S. Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75, 032351 (2007).

  52. 52.

    Prilmüller, M. et al. Hyperentanglement of photons emitted by a quantum dot. Phys. Rev. Lett. 121, 110503 (2018).

  53. 53.

    Olbricha, F. et al. Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Appl. Phys. Lett. 111, 133106 (2017).

  54. 54.

    Huwer, J. et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys. Rev. Appl. 8, 024007 (2017).

  55. 55.

    Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

  56. 56.

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 11, 2744 (2013).

  57. 57.

    Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

Download references

Acknowledgements

We acknowledge R. Trotta, X. Yuan, H. Huang, M. Reindl, D. Huber and Y. Huo for discussions. We are grateful for financial support from the National Key R&D Program of China (2016YFA0301300, 2018YFA0306100), the National Natural Science Foundations of China (91750207, 11674402, 11761141015, 11761131001, 11874437, 11704424), Guangzhou Science and Technology project (201805010004), the Natural Science Foundations of Guangdong (2018B030311027, 2017A030310004, 2016A030310216, 2016A030312012), the national supercomputer center in Guangzhou, the Austrian Science Fund (FWF): P29603, and the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

Author information

R.B.S., J. Li and X.W. conceived the nanostructure and its fabrication strategy. J. Liu proposed the entanglement generation and designed the experiments. R.S and K.S. contributed to the structure simulations. S.F.C.d.S. and Y.Y. grew the QD wafers. R.S., B.Y., J. Liu and J. Li fabricated the devices. Y.W., RS., B.Y. and J. Liu characterized the devices. J.I.-S. performed the indistinguishability calculation. J. Liu, Y.W. and R.S. analysed the data. J. Liu wrote the manuscript with inputs from all authors. J. Liu, A.R. and X.W. supervised the project.

Competing interests

The authors declare no competing interests.

Correspondence to Armando Rastelli or Juntao Li or Xuehua Wang.

Supplementary information

  1. Supplementary Information

    Supplementary text and Supplementary Figures 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Circular Bragg resonator on highly efficient broadband reflector for generation of entangled photon pairs.
Fig. 2: Basic characterization of the QD-CBR-HBR device.
Fig. 3: Entanglement characterization.
Fig. 4: Photon indistinguishability.