Article | Published:

Current-controlled propagation of spin waves in antiparallel, coupled domains

Abstract

Spin waves may constitute key components of low-power spintronic devices. Antiferromagnetic-type spin waves are innately high-speed, stable and dual-polarized. So far, it has remained challenging to excite and manipulate antiferromagnetic-type propagating spin waves. Here, we investigate spin waves in periodic 100-nm-wide stripe domains with alternating upward and downward magnetization in La0.67Sr0.33MnO3 thin films. In addition to ordinary low-frequency modes, a high-frequency mode around 10 GHz is observed and propagates along the stripe domains with a spin-wave dispersion different from the low-frequency mode. Based on a theoretical model that considers two oppositely oriented coupled domains, this high-frequency mode is accounted for as an effective antiferromagnetic spin-wave mode. The spin waves exhibit group velocities of 2.6 km s−1 and propagate even at zero magnetic bias field. An electric current pulse with a density of only 105 A cm−2 can controllably modify the orientation of the stripe domains, which opens up perspectives for reconfigurable magnonic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding authors upon reasonable request.

Additional information

Journal peer review information: Nature Nanotechnology thanks Marco Madami, Markus Münzenberg and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

  2. 2.

    Grundler, D. Spintronics: nanomagnonics around the corner. Nat. Nanotechnol. 11, 407–408 (2016).

  3. 3.

    Demidov, V. E. et al. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1–31 (2017).

  4. 4.

    Yu, H., Xiao, J. & Pirro, P. Magnon spintronics. J. Magn. Magn. Mater. 450, 1–2 (2018).

  5. 5.

    Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  6. 6.

    Holländer, R. B., Müller, C., Schmalz, J., Gerken, M. & McCord, J. Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters. Sci. Rep. 8, 13871 (2018).

  7. 7.

    Haldar, A., Kumar, D. & Adeyeye, A. O. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotechnol. 11, 437–443 (2016).

  8. 8.

    Wagner, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016).

  9. 9.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

  10. 10.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

  11. 11.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2010).

  12. 12.

    Caspers, C., Gandhi, V. P., Magrez, A., Rijk, E. D. & Ansermet, J. Sub-terahertz spectroscopy of magnetic resonance in BiFeO3 using a vector network analyzer. Appl. Phys. Lett. 108, 241109 (2016).

  13. 13.

    Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

  14. 14.

    Gruenberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

  15. 15.

    Hillebrands, B. Spin-wave calculations for multilayered structures. Phys. Rev. B 41, 530–540 (1990).

  16. 16.

    Topp, J., Heitmann, D., Kostylev, M. P. & Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 104, 207205 (2010).

  17. 17.

    Ding, J., Kostylev, M. P. & Adeyeye, A. O. Magnonic crystal as a medium with tunable disorder on a periodical lattice. Phys. Rev. Lett. 107, 047205 (2011).

  18. 18.

    Tacchi, S. et al. Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes. Phys. Rev. B 82, 184408 (2010).

  19. 19.

    Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438–441 (2015).

  20. 20.

    Wang, J. et al. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film. Appl. Phys. Lett. 112, 072408 (2018).

  21. 21.

    Magaraggia, R. et al. Probing La0.7Sr0.3MnO3 multilayers via spin wave resonances. Phys. Rev. B 84, 104441 (2011).

  22. 22.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. S. P. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

  23. 23.

    Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1191 (2017).

  24. 24.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Nanotechnol. 15, 501–506 (2016).

  25. 25.

    Wang, J. et al. Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer. Phys. Rev. B 90, 224407 (2014).

  26. 26.

    Steenbeck, K. & Hiergeist, R. Magnetic anisotropy of ferromagnetic La0.7(Sr, Ca)0.3MnO3 epitaxial films. Appl. Phys. Lett. 75, 1778–1780 (1999).

  27. 27.

    Bakaul, S. R., Hu, W., Wu, T. & Kimura, T. Intrinsic domain-wall resistivity in half-metallic manganite thin films. Phys. Rev. B 86, 184404 (2012).

  28. 28.

    Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

  29. 29.

    Neusser, S. et al. Anisotropic propagation and damping of spin waves in a nanopatterned antidot lattice. Phys. Rev. Lett. 105, 067208 (2010).

  30. 30.

    Yu, H. et al. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 4, 6848 (2014).

  31. 31.

    Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).

  32. 32.

    Camara, I. S. et al. Magnetization dynamics of weak stripe domains in Fe–N thin films: a multitechnique complementary approach. J. Phys. Condens. Matter 29, 465803 (2017).

  33. 33.

    Macke, S. & Goll, D. Transmission and reflection of spin waves in the presence of Néel walls. J. Phys. Conf. Ser. 200, 042015 (2010).

  34. 34.

    Hämäläinen, S. J., Madami, M., Qin, H., Gubbiotti, G. & van Dijken, S. Control of spin-wave transmission by a programmable domain wall. Nat. Commun. 9, 4853 (2018).

  35. 35.

    Huber, R. et al. Reciprocal Damon–Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry. Appl. Phys. Lett. 102, 012403 (2013).

  36. 36.

    Daniels, M. W., Guo, W., Stocks, G. M., Xiao, D. & Xiao, J. Spin-transfer torque induced spin waves in antiferromagnetic insulators. New J. Phys. 17, 103039 (2015).

  37. 37.

    Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, 0415 (2018).

  38. 38.

    Lee, J. M. et al. All-electrical measurement of interfacial Dzyaloshinskii–Moriya interaction using collective spin-wave dynamics. Nano Lett. 16, 62–67 (2016).

  39. 39.

    Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1996).

  40. 40.

    Stancil, D. D. & Prabhakar, A. Spin Waves: Theory and Applications (Springer, 2009).

  41. 41.

    Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986).

  42. 42.

    Kronseder, M., Buchner, M., Bauer, H. G. & Back, C. H. Dipolar-energy-activated magnetic domain pattern transformation driven by thermal fluctuations. Nat. Commun. 4, 2054 (2013).

  43. 43.

    Conca, A. et al. Low spin-wave damping in amorphous Co40Fe40B20 thin films. J. Appl. Phys. 113, 213909 (2013).

  44. 44.

    Hämäläinen, S. J., Brandl, F., Franke, K. J. A., Grundler, D. & van Dijken, S. Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys. Rev. Appl. 8, 014020 (2017).

  45. 45.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  46. 46.

    Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

  47. 47.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–194 (2011).

  48. 48.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

  49. 49.

    Sadovnikov, A. V. et al. Magnon straintronics: reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes. Phys. Rev. Lett. 120, 257203 (2018).

  50. 50.

    Tacchi, S. et al. Rotatable magnetic anisotropy in a Fe0.8Ga0.2 thin film with stripe domains: dynamics versus statics. Phys. Rev. B 89, 024411 (2011).

Download references

Acknowledgements

The authors thank J. Hu, K. Wagner and H. Schultheiss for discussions. The authors also acknowledge support from NSF China under grants nos. 11674020, 11444005, U1801661 and 51788104, 111 Talent Program B16001 and the Ministry of Science and Technology of China MOST no. 2016YFA0300802. The work in Beijing Normal University is supported by the National Key Research and Development Program of China through contract no. 2016YFA0302300. J.D. and M.W. were supported by the US National Science Foundation (EFMA-1641989) and the US Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0018994). J.X. is supported by NSF China under grant no. 11722430.

Author information

J.X., Jinxing Z. and H.Y. conceived and designed the experiments. S.W., Y.Z. and Jinxing Z. provided the LSMO films. J.D. and M.W. characterized the films with SQUID and FMR techniques. C. Liu, Jianyu Z., J.C. and H.Y. designed and fabricated the spin-wave devices. J.M., S.W., Y.Z., Jinxing Z. and C.-W.N. conducted the MFM measurements. Y.S., C. Liu, P.G. and D.Y. conducted the transmission electron microscopy characterization. C. Liu, Jianyu Z., J.C. and H.Y. performed the spin-wave measurements. S.W., C. Liu, Jianyu Z., S.T. and H.Y. conducted the current-control experiments. S.W., P.L., C. Li and Y.J. fabricated the eight-terminal device for current-switching experiments. J.C., Jianyu Z., C. Liu and H.Y. analysed the data. R.D. performed the theoretical modelling. C. Liu, H.W. and J.C. performed the micromagnetic simulations. Jinxing Z. and H.Y. supervised the experimental study. H.Y., J.C., C. Liu and Jianyu Z. wrote the paper and the Supplementary Information.

Competing interests

The authors declare no competing interests.

Correspondence to Jinxing Zhang or Haiming Yu.

Supplementary Information

Supplementary information

Supplementary Figs. 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Nanostripe domain structures and spin-wave spectra measured by a VNA.
Fig. 2: Spin-wave reflection measurement and micromagnetic simulations.
Fig. 3: Control spin-wave propagation by rotating domain stripes.
Fig. 4: Magnetic characterization and spin-wave dispersion relations.
Fig. 5: Current switching of the stripe domains for reconfigurable spin-wave propagation.