Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current-controlled propagation of spin waves in antiparallel, coupled domains

Abstract

Spin waves may constitute key components of low-power spintronic devices. Antiferromagnetic-type spin waves are innately high-speed, stable and dual-polarized. So far, it has remained challenging to excite and manipulate antiferromagnetic-type propagating spin waves. Here, we investigate spin waves in periodic 100-nm-wide stripe domains with alternating upward and downward magnetization in La0.67Sr0.33MnO3 thin films. In addition to ordinary low-frequency modes, a high-frequency mode around 10 GHz is observed and propagates along the stripe domains with a spin-wave dispersion different from the low-frequency mode. Based on a theoretical model that considers two oppositely oriented coupled domains, this high-frequency mode is accounted for as an effective antiferromagnetic spin-wave mode. The spin waves exhibit group velocities of 2.6 km s−1 and propagate even at zero magnetic bias field. An electric current pulse with a density of only 105 A cm−2 can controllably modify the orientation of the stripe domains, which opens up perspectives for reconfigurable magnonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanostripe domain structures and spin-wave spectra measured by a VNA.
Fig. 2: Spin-wave reflection measurement and micromagnetic simulations.
Fig. 3: Control spin-wave propagation by rotating domain stripes.
Fig. 4: Magnetic characterization and spin-wave dispersion relations.
Fig. 5: Current switching of the stripe domains for reconfigurable spin-wave propagation.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding authors upon reasonable request.

References

  1. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  2. Grundler, D. Spintronics: nanomagnonics around the corner. Nat. Nanotechnol. 11, 407–408 (2016).

    Article  CAS  Google Scholar 

  3. Demidov, V. E. et al. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1–31 (2017).

    Article  CAS  Google Scholar 

  4. Yu, H., Xiao, J. & Pirro, P. Magnon spintronics. J. Magn. Magn. Mater. 450, 1–2 (2018).

    Article  CAS  Google Scholar 

  5. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  Google Scholar 

  6. Holländer, R. B., Müller, C., Schmalz, J., Gerken, M. & McCord, J. Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters. Sci. Rep. 8, 13871 (2018).

    Article  Google Scholar 

  7. Haldar, A., Kumar, D. & Adeyeye, A. O. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotechnol. 11, 437–443 (2016).

    Article  CAS  Google Scholar 

  8. Wagner, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016).

    Article  CAS  Google Scholar 

  9. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  10. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  11. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2010).

    Article  Google Scholar 

  12. Caspers, C., Gandhi, V. P., Magrez, A., Rijk, E. D. & Ansermet, J. Sub-terahertz spectroscopy of magnetic resonance in BiFeO3 using a vector network analyzer. Appl. Phys. Lett. 108, 241109 (2016).

    Article  Google Scholar 

  13. Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

    Article  CAS  Google Scholar 

  14. Gruenberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

    Article  CAS  Google Scholar 

  15. Hillebrands, B. Spin-wave calculations for multilayered structures. Phys. Rev. B 41, 530–540 (1990).

    Article  CAS  Google Scholar 

  16. Topp, J., Heitmann, D., Kostylev, M. P. & Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 104, 207205 (2010).

    Article  Google Scholar 

  17. Ding, J., Kostylev, M. P. & Adeyeye, A. O. Magnonic crystal as a medium with tunable disorder on a periodical lattice. Phys. Rev. Lett. 107, 047205 (2011).

    Article  CAS  Google Scholar 

  18. Tacchi, S. et al. Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes. Phys. Rev. B 82, 184408 (2010).

    Article  Google Scholar 

  19. Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438–441 (2015).

    Article  CAS  Google Scholar 

  20. Wang, J. et al. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film. Appl. Phys. Lett. 112, 072408 (2018).

    Article  Google Scholar 

  21. Magaraggia, R. et al. Probing La0.7Sr0.3MnO3 multilayers via spin wave resonances. Phys. Rev. B 84, 104441 (2011).

    Article  Google Scholar 

  22. Yang, S.-H., Ryu, K.-S. & Parkin, S. S. P. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article  CAS  Google Scholar 

  23. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1191 (2017).

    Article  CAS  Google Scholar 

  24. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Nanotechnol. 15, 501–506 (2016).

    CAS  Google Scholar 

  25. Wang, J. et al. Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer. Phys. Rev. B 90, 224407 (2014).

    Article  Google Scholar 

  26. Steenbeck, K. & Hiergeist, R. Magnetic anisotropy of ferromagnetic La0.7(Sr, Ca)0.3MnO3 epitaxial films. Appl. Phys. Lett. 75, 1778–1780 (1999).

    Article  CAS  Google Scholar 

  27. Bakaul, S. R., Hu, W., Wu, T. & Kimura, T. Intrinsic domain-wall resistivity in half-metallic manganite thin films. Phys. Rev. B 86, 184404 (2012).

    Article  Google Scholar 

  28. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    Article  CAS  Google Scholar 

  29. Neusser, S. et al. Anisotropic propagation and damping of spin waves in a nanopatterned antidot lattice. Phys. Rev. Lett. 105, 067208 (2010).

    Article  CAS  Google Scholar 

  30. Yu, H. et al. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 4, 6848 (2014).

    Article  CAS  Google Scholar 

  31. Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).

    Article  Google Scholar 

  32. Camara, I. S. et al. Magnetization dynamics of weak stripe domains in Fe–N thin films: a multitechnique complementary approach. J. Phys. Condens. Matter 29, 465803 (2017).

    Article  CAS  Google Scholar 

  33. Macke, S. & Goll, D. Transmission and reflection of spin waves in the presence of Néel walls. J. Phys. Conf. Ser. 200, 042015 (2010).

    Article  Google Scholar 

  34. Hämäläinen, S. J., Madami, M., Qin, H., Gubbiotti, G. & van Dijken, S. Control of spin-wave transmission by a programmable domain wall. Nat. Commun. 9, 4853 (2018).

    Article  Google Scholar 

  35. Huber, R. et al. Reciprocal Damon–Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry. Appl. Phys. Lett. 102, 012403 (2013).

    Article  Google Scholar 

  36. Daniels, M. W., Guo, W., Stocks, G. M., Xiao, D. & Xiao, J. Spin-transfer torque induced spin waves in antiferromagnetic insulators. New J. Phys. 17, 103039 (2015).

    Article  Google Scholar 

  37. Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, 0415 (2018).

    Article  Google Scholar 

  38. Lee, J. M. et al. All-electrical measurement of interfacial Dzyaloshinskii–Moriya interaction using collective spin-wave dynamics. Nano Lett. 16, 62–67 (2016).

    Article  CAS  Google Scholar 

  39. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1996).

  40. Stancil, D. D. & Prabhakar, A. Spin Waves: Theory and Applications (Springer, 2009).

  41. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986).

    Article  Google Scholar 

  42. Kronseder, M., Buchner, M., Bauer, H. G. & Back, C. H. Dipolar-energy-activated magnetic domain pattern transformation driven by thermal fluctuations. Nat. Commun. 4, 2054 (2013).

    Article  CAS  Google Scholar 

  43. Conca, A. et al. Low spin-wave damping in amorphous Co40Fe40B20 thin films. J. Appl. Phys. 113, 213909 (2013).

    Article  Google Scholar 

  44. Hämäläinen, S. J., Brandl, F., Franke, K. J. A., Grundler, D. & van Dijken, S. Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys. Rev. Appl. 8, 014020 (2017).

    Article  Google Scholar 

  45. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  46. Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

    Article  CAS  Google Scholar 

  47. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–194 (2011).

    Article  CAS  Google Scholar 

  48. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  CAS  Google Scholar 

  49. Sadovnikov, A. V. et al. Magnon straintronics: reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes. Phys. Rev. Lett. 120, 257203 (2018).

    Article  CAS  Google Scholar 

  50. Tacchi, S. et al. Rotatable magnetic anisotropy in a Fe0.8Ga0.2 thin film with stripe domains: dynamics versus statics. Phys. Rev. B 89, 024411 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Hu, K. Wagner and H. Schultheiss for discussions. The authors also acknowledge support from NSF China under grants nos. 11674020, 11444005, U1801661 and 51788104, 111 Talent Program B16001 and the Ministry of Science and Technology of China MOST no. 2016YFA0300802. The work in Beijing Normal University is supported by the National Key Research and Development Program of China through contract no. 2016YFA0302300. J.D. and M.W. were supported by the US National Science Foundation (EFMA-1641989) and the US Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0018994). J.X. is supported by NSF China under grant no. 11722430.

Author information

Authors and Affiliations

Authors

Contributions

J.X., Jinxing Z. and H.Y. conceived and designed the experiments. S.W., Y.Z. and Jinxing Z. provided the LSMO films. J.D. and M.W. characterized the films with SQUID and FMR techniques. C. Liu, Jianyu Z., J.C. and H.Y. designed and fabricated the spin-wave devices. J.M., S.W., Y.Z., Jinxing Z. and C.-W.N. conducted the MFM measurements. Y.S., C. Liu, P.G. and D.Y. conducted the transmission electron microscopy characterization. C. Liu, Jianyu Z., J.C. and H.Y. performed the spin-wave measurements. S.W., C. Liu, Jianyu Z., S.T. and H.Y. conducted the current-control experiments. S.W., P.L., C. Li and Y.J. fabricated the eight-terminal device for current-switching experiments. J.C., Jianyu Z., C. Liu and H.Y. analysed the data. R.D. performed the theoretical modelling. C. Liu, H.W. and J.C. performed the micromagnetic simulations. Jinxing Z. and H.Y. supervised the experimental study. H.Y., J.C., C. Liu and Jianyu Z. wrote the paper and the Supplementary Information.

Corresponding authors

Correspondence to Jinxing Zhang or Haiming Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Marco Madami, Markus Münzenberg and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information

Supplementary Figs. 1–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wu, S., Zhang, J. et al. Current-controlled propagation of spin waves in antiparallel, coupled domains. Nat. Nanotechnol. 14, 691–697 (2019). https://doi.org/10.1038/s41565-019-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0429-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing