Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Injection of oxygen vacancies in the bulk lattice of layered cathodes

Abstract

Surfaces, interfaces and grain boundaries are classically known to be sinks of defects generated within the bulk lattice. Here, we report an inverse case by which the defects generated at the particle surface are continuously pumped into the bulk lattice. We show that, during operation of a rechargeable battery, oxygen vacancies produced at the surfaces of lithium-rich layered cathode particles migrate towards the inside lattice. This process is associated with a high cutoff voltage at which an anionic redox process is activated. First-principle calculations reveal that triggering of this redox process leads to a sharp decrease of both the formation energy of oxygen vacancies and the migration barrier of oxidized oxide ions, therefore enabling the migration of oxygen vacancies into the bulk lattice of the cathode. This work unveils a coupled redox dynamic that needs to be taken into account when designing high-capacity layered cathode materials for high-voltage lithium-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical performance and structural degradation.
Fig. 2: 3D tomography reconstruction showing the spatial distribution of nanovoids
Fig. 3: Spatial and temporal evolution of structural degradation from the surface into the bulk
Fig. 4: Chemical composition analysis.
Fig. 5: First-principles calculation to reveal the triggering of anionic redox.

Similar content being viewed by others

Data availability

Data that support the findings of this study are kept at the William R. Wiley Environmental Molecular Sciences Laboratory at PNNL and are available from the corresponding authors upon request.

References

  1. Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015).

    Article  CAS  Google Scholar 

  2. Manthiram, A., Knight, J. C., Myung, S. T., Oh, S. M. & Sun, Y. K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016).

    Article  Google Scholar 

  3. Hy, S. et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci. 9, 1931–1954 (2016).

    Article  CAS  Google Scholar 

  4. Seo, D. H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  5. Luo, K. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  Google Scholar 

  6. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  7. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  8. Qiu, B., Zhang, M., Xia, Y., Liu, Z. & Meng, Y. S. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem. Mater. 29, 908–915 (2017).

    Article  CAS  Google Scholar 

  9. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  CAS  Google Scholar 

  10. Zheng, J. et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015).

    Article  CAS  Google Scholar 

  11. Gu, L., Xiao, D., Hu, Y. S., Li, H. & Ikuhara, Y. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv. Mater. 27, 2134–2149 (2015).

    Article  CAS  Google Scholar 

  12. Gu, M. et al. Nanoscale phase separation, cation ordering and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem. Mater. 25, 2319–2326 (2013).

    Article  CAS  Google Scholar 

  13. Xu, B., Fell, C. R., Chi, M. F. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011).

    Article  CAS  Google Scholar 

  14. Zheng, J. et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013).

    Article  CAS  Google Scholar 

  15. Mohanty, D. et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239–248 (2013).

    Article  CAS  Google Scholar 

  16. Yang, X. Q., Sun, X. & McBreen, J. New findings on the phase transitions in Li1-xNiO2: in situ synchrotron X-ray diffraction studies. Electrochem. Commun. 1, 227–232 (1999).

    Article  Google Scholar 

  17. Yoon, W.-S., Chung, K. Y., McBreen, J. & Yang, X.-Q. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem. Commun. 8, 1257–1262 (2006).

    Article  CAS  Google Scholar 

  18. Rana, J. et al. Structural changes in Li2MnO3 cathode material for Li-ion batteries. Adv. Energy Mater. 4, 1300998 (2014).

    Article  Google Scholar 

  19. Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article  Google Scholar 

  20. Yabuuchi, N., Yoshii, K., Myung, S. T., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011).

    Article  CAS  Google Scholar 

  21. Yan, P. F. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article  CAS  Google Scholar 

  22. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode beta-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  CAS  Google Scholar 

  23. Lee, E. & Persson, K. A. Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations. Adv. Energy Mater. 4, 1400498 (2014).

    Article  Google Scholar 

  24. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006).

    Article  CAS  Google Scholar 

  25. Lu, Z. H., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. Synthesis, structure and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc. 149, A778–A791 (2002).

    Article  CAS  Google Scholar 

  26. Hausbrand, R. et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches. Mater. Sci. Eng. B 192, 3–25 (2015).

    Article  CAS  Google Scholar 

  27. Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  CAS  Google Scholar 

  28. Hoang, K. Defect physics, delithiation mechanism, and electronic and ionic conduction in layered lithium manganese oxide cathode materials. Phys. Rev. Appl. 3, 024013 (2015).

    Article  CAS  Google Scholar 

  29. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  Google Scholar 

  30. Yan, P. et al. Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co and Mn with Li in layered lithium transition metal oxide cathode materials. Chem. Mater. 27, 5393–5401 (2015).

    Article  CAS  Google Scholar 

  31. Yan, P., Zheng, J., Zhang, J.-G. & Wang, C. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co and Mn upon the battery cycling of layered cathode. Nano Lett. 17, 3946–3951 (2017).

    Article  CAS  Google Scholar 

  32. Gu, M. et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 12, 5186–5191 (2012).

    Article  CAS  Google Scholar 

  33. Yan, P. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 15, 514–522 (2015).

    Article  CAS  Google Scholar 

  34. Qian, D., Xu, B., Chi, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).

    Article  CAS  Google Scholar 

  35. Fell, C. R. et al. Correlation between oxygen vacancy, microstrain and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 25, 1621–1629 (2013).

    Article  CAS  Google Scholar 

  36. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    Article  CAS  Google Scholar 

  37. Mohanty, D. et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014).

    Article  CAS  Google Scholar 

  38. Abdellahi, A., Urban, A., Dacek, S. & Ceder, G. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides. Chem. Mater. 28, 3659–3665 (2016).

    Article  CAS  Google Scholar 

  39. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  40. Saubanere, M., McCalla, E., Tarascon, J. M. & Doublet, M. L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  CAS  Google Scholar 

  41. Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  CAS  Google Scholar 

  42. Liu, S. et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 8, 1802105 (2018).

    Article  Google Scholar 

  43. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  CAS  Google Scholar 

  44. Kuppan, S., Shukla, A. K., Membreno, D., Nordlund, D. & Chen, G. Revealing anisotropic spinel formation on pristine Li- and Mn-rich layered oxide surface and its impact on cathode performance. Adv. Energy Mater. 7, 1602010 (2017).

    Article  Google Scholar 

  45. Devaraj, A. et al. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat. Commun. 6, 8014 (2015).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003); erratum 124, 219906 (2006).

    Article  CAS  Google Scholar 

  49. Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    Article  CAS  Google Scholar 

  50. Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  CAS  Google Scholar 

  51. Xiao, R., Li, H. & Chen, L. Density functional investigation on Li2MnO3. Chem. Mater. 24, 4242–4251 (2012).

    Article  CAS  Google Scholar 

  52. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  53. Chen, H. & Umezawa, N. Hole localization, migration and the formation of peroxide anion in perovskite SrTiO3. Phys. Rev. B 90, 035202 (2014).

    Article  Google Scholar 

  54. Chen, S. & Wang, L.-W. Double-hole-induced oxygen dimerization in transition metal oxides. Phys. Rev. B 89, 014109 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231, subcontract no. 6951379 under the Batteries for Advanced Battery Materials Research. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for DOE under contract DE-AC05-76RLO1830. L.-M.L. was supported by the Science Challenge Project (TZ2018004) of the National Natural Science Foundation of China (nos. 51572016 and U1530401) and the Fundamental Research Funds for the Central Universities, and Newton Advanced Fellowship under grant no. NAFR1180242. P.Y. acknowledges support from the National Natural Science Fund for Innovative Research Groups (grant no. 51621003) and the National Key Research and Development Program of China (grant no. 2016YFB0700700). Z.-K.T. thanks the National Natural Science Foundation of China (grant no. 51602092) for support.

Author information

Authors and Affiliations

Authors

Contributions

P.Y. and C.W. conceived the research plan. J.Z., J.-G.Z., K.A. and G.C. synthesized the samples and carried out the cell test. P.Y. conducted the TEM work. Z.-K.T. and L.-M.L. conducted the simulation work. P.Y. and C.W. wrote the manuscript. All authors approved the final version.

Corresponding authors

Correspondence to Pengfei Yan, Li-Min Liu or Chongmin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Jun Chen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–10

Supplementary Video 1

Volume rendering and slicing of the 3D reconstruction

Supplementary Video 2

Iso-surface displaying the 3D reconstruction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Zheng, J., Tang, ZK. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019). https://doi.org/10.1038/s41565-019-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0428-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing