Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions

Subjects

Abstract

Despite considerable efforts to stabilize lithium metal anode structures and prevent dendrite formation, achieving long cycling life in high-energy batteries under realistic conditions remains extremely difficult due to a combination of complex failure modes that involve accelerated anode degradation and the depletion of electrolyte and lithium metal. Here we report a self-smoothing lithium–carbon anode structure based on mesoporous carbon nanofibres, which, coupled with a lithium nickel–manganese–cobalt oxide cathode with a high nickel content, can lead to a cell-level energy density of 350–380 Wh kg−1 (counting all the active and inactive components) and a stable cycling life up to 200 cycles. These performances are achieved under the realistic conditions required for practical high-energy rechargeable lithium metal batteries: cathode loading ≥4.0 mAh cm−2, negative to positive electrode capacity ratio ≤2 and electrolyte weight to cathode capacity ratio ≤3 g Ah−1. The high stability of our anode is due to the amine functionalization and the mesoporous carbon structures that favour smooth lithium deposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of self-smoothing behaviour in the Li–C anode.
Fig. 2: Characterizations of Li infiltration into carbon film.
Fig. 3: Self-smoothing behaviour in a Li–C anode during electrochemical cycling.
Fig. 4: Traditional test of Li-C||NMC622 cell with a low-loading cathode, excess Li and flooded electrolyte.
Fig. 5: Electrochemical performance of Li–C||NMC622 and Li–C||NMC811 cells under the realistic constrained conditions required for high energy densities.

Similar content being viewed by others

References

  1. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Article  Google Scholar 

  2. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  CAS  Google Scholar 

  3. Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article  CAS  Google Scholar 

  4. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  Google Scholar 

  5. Bouchet, R. Batteries: a stable lithium metal interface. Nat. Nanotechnol. 9, 572–573 (2014).

    Article  CAS  Google Scholar 

  6. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  CAS  Google Scholar 

  7. Huang, Z. et al. Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 30, 1803270 (2018).

    Article  Google Scholar 

  8. Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531–537 (2010).

    Article  CAS  Google Scholar 

  9. Li, L. et al. Self-heating-induced healing of lithium dendrites. Science 359, 1513–1516 (2018).

    Article  CAS  Google Scholar 

  10. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  CAS  Google Scholar 

  11. Dudney, N. J. & Li, J. Using all energy in a battery. Science 347, 131–132 (2015).

    Article  CAS  Google Scholar 

  12. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2017).

    Article  CAS  Google Scholar 

  13. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  14. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    Article  CAS  Google Scholar 

  15. Yu, D. et al. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014).

    Article  CAS  Google Scholar 

  16. Ye, H. et al. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 139, 5916–5922 (2017).

    Article  CAS  Google Scholar 

  17. Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    Article  CAS  Google Scholar 

  18. Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018).

    Article  CAS  Google Scholar 

  19. Liu, L. et al. Uniform lithium nucleation/growth induced by lightweight nitrogen doped graphitic carbon foams for high performance lithium metal anodes. Adv. Mater. 30, 1706216 (2018).

    Article  Google Scholar 

  20. Ye, H., Xin, S., Yin, Y. X. & Guo, Y. G. Advanced porous carbon materials for high-efficient lithium metal anodes. Adv. Energy Mater. 7, 1700530 (2017).

    Article  Google Scholar 

  21. Wang, T. et al. Ultrafast charging high capacity asphalt–lithium metal batteries. ACS Nano 11, 10761–10767 (2017).

    Article  CAS  Google Scholar 

  22. Liu, Y. M. et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Mater. 18, 320–327 (2019).

    Article  Google Scholar 

  23. Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011).

    Article  CAS  Google Scholar 

  24. Huang, S., Tang, L., Najafabadi, H. S., Chen, S. & Ren, Z. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy 38, 504–509 (2017).

    Article  CAS  Google Scholar 

  25. Zhang, Y. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl Acad. Sci. USA 114, 3584–3589 (2017).

    Article  CAS  Google Scholar 

  26. Matsuda, S., Kubo, Y., Uosaki, K. & Nakanishi, S. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119, 119–123 (2017).

    Article  CAS  Google Scholar 

  27. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    Article  CAS  Google Scholar 

  28. Raji, A. R. O. et al. Lithium batteries with nearly maximum metal storage. ACS Nano 11, 6362–6369 (2017).

    Article  CAS  Google Scholar 

  29. Zhang, H. et al. Lithiophilic–lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 9, 3729 (2018).

    Article  Google Scholar 

  30. Fu, K. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl Acad. Sci. USA 113, 7094–7099 (2016).

    Article  CAS  Google Scholar 

  31. Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article  CAS  Google Scholar 

  32. Li, W., Li, M., Wang, M., Zeng, L. & Yu, Y. Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13, 693–701 (2015).

    Article  CAS  Google Scholar 

  33. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    Article  CAS  Google Scholar 

  34. Sano, H., Sakaebe, H., Senoh, H. & Matsumoto, H. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J. Electrochem. Soc. 161, A1236–A1240 (2014).

    Article  CAS  Google Scholar 

  35. Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

    Article  Google Scholar 

  36. Liu, Y. et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2, 17083 (2017).

    Article  CAS  Google Scholar 

  37. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  CAS  Google Scholar 

  38. Chen, K. H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article  CAS  Google Scholar 

  39. Jiao, S. H. et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2, 1–15 (2018).

    Article  CAS  Google Scholar 

  40. Wu, B., Lochala, J., Taverne, T. & Xiao, J. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 40, 34–41 (2017).

    Article  CAS  Google Scholar 

  41. Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017).

    Article  CAS  Google Scholar 

  42. Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  43. Kim, M. S. et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 3, 889–898 (2018).

    Article  CAS  Google Scholar 

  44. Niu, C. J. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402 (2015).

    Article  Google Scholar 

  45. Otitoju, T. A., Ahmad, A. L. & Ooi, B. S. Superhydrophilic (superwetting) surface: a review on fabrication and application. J. Ind. Eng. Chem. 47, 19–40 (2017).

    Article  CAS  Google Scholar 

  46. Drelich, J., Chibowski, E., Meng, D. D. & Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7, 9804–9828 (2011).

    Article  CAS  Google Scholar 

  47. Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    Article  CAS  Google Scholar 

  48. Zheng, F., Yang, Y. & Chen, Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat. Commun. 5, 5261 (2014).

    Article  CAS  Google Scholar 

  49. Ichikawa, T., Hanada, N., Isobe, S., Leng, H. & Fujii, H. Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J. Phys. Chem. B 108, 7887–7892 (2004).

    Article  CAS  Google Scholar 

  50. Janot, R., Eymery, J. B. & Tarascon, J. M. Decomposition of LiAl(NH2)4 and reaction with LiH for a possible reversible hydrogen storage. J. Phys. Chem. C 111, 2335–2340 (2007).

    Article  CAS  Google Scholar 

  51. Li, Z. et al. Mechanochemistry of lithium nitride under hydrogen gas. Phys. Chem. Chem. Phys. 17, 21927 (2015).

    Article  CAS  Google Scholar 

  52. Christenson, H. K. Two-step crystal nucleation via capillary condensation. CrystEngComm 15, 2030–2039 (2013).

    Article  CAS  Google Scholar 

  53. Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320 (2009).

    Article  CAS  Google Scholar 

  54. Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942 (2012).

    Article  CAS  Google Scholar 

  55. Kimura, N. et al. Cycle deterioration analysis of 0.6 Ah-class lithium-ion cells with cell chemistry of LiNi0.6Co0.2Mn0.2O2-based/graphite. J. Power Sources 332, 187–192 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (DOE) through the Advanced Battery Materials Research (BMR) program (Battery500 Consortium) under contract no. DE-AC02-05CH11231. The transmission electron microscopy, STEM, SEM, energy-dispersive X-ray diffraction, X-ray diffraction, X-ray photoemission spectroscopy, Raman, Fourier transform infrared spectroscopy and computational calculations were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL01830. We thank D. Zhao of Fudan University for discussion during the exploration to solve Li wetting. We thank H. Lee of PNNL for optimizing the figures.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and C.N. conceived the research and designed the experiments. C.N. performed the material synthesis, characterization, electrochemical measurements and analysed the data. J.M., X.W., Z.L. and L.M. performed some experiments in the exploration to solve Li wetting. L.L. and C.W. carried out the in situ STEM experiment. D.M. performed the molecular dynamics simulation. H.P., W.X., J.X. and J.-G.Z. revised the manuscript. C.N. and J.L. wrote the paper with input from all the authors.

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks James Tour, Karim Zaghib and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–10; Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Pan, H., Xu, W. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0427-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing