Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets

Abstract

Magnetic oxides exhibit rich fundamental physics1,2,3,4 and technologically desirable properties for spin-based memory, logic and signal transmission5,6,7. Recently, spin–orbit-induced spin transport phenomena have been realized in insulating magnetic oxides by using proximate heavy metal layers such as platinum8,9,10. In their metallic ferromagnet counterparts, such interfaces also give rise to a Dzyaloshinskii–Moriya interaction11,12,13 that can stabilize homochiral domain walls and skyrmions with efficient current-driven dynamics. However, chiral magnetism in centrosymmetric oxides has not yet been observed. Here we discover chiral magnetism that allows for pure spin-current-driven domain wall motion in the most ubiquitous class of magnetic oxides, ferrimagnetic iron garnets. We show that epitaxial rare-earth iron garnet films with perpendicular magnetic anisotropy exhibit homochiral Néel domain walls that can be propelled faster than 800 m s−1 by spin current from an adjacent platinum layer. We find that, despite the relatively small interfacial Dzyaloshinskii–Moriya interaction, very high velocities can be attained due to the antiferromagnetic spin dynamics associated with ferrimagnetic order.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up and current-induced magnetization reversal.
Fig. 2: Field-driven DW dynamics.
Fig. 3: Current-assisted depinning and DW propagation.
Fig. 4: Measuring chiral exchange fields for various rare-earth garnets and interfaces.
Fig. 5: Current-driven DW velocity.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Yamada, H. et al. Engineered interface of magnetic oxides. Science 305, 646–648 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Banerjee, S., Erten, O. & Randeria, M. Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface. Nat. Phys. 9, 626–630 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Bibes, M. & Barthélémy, A. Oxide spintronics. IEEE Trans. Electron. Dev. 54, 1003–1023 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & Van Wees, B. J. Long distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Avci, C. O. et al. Current induced switching in a magnetic insulator. Nat. Mater. 16, 309–314 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Ryu, K., Thomas, L., Yang, S. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Torrejon, J. et al. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat. Commun. 5, 4655 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  15. 15.

    Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Thiaville, A., Rohart, S., Jue, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Eur. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  19. 19.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Yang, H. et al. Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect. Nat. Mater. 17, 605–609 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Ryu, K., Yang, S., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3–SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

    Article  Google Scholar 

  26. 26.

    Ohuchi, Y. et al. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin film. Nat. Commun. 9, 213 (2018).

    Article  Google Scholar 

  27. 27.

    Wang, L. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 17, 1087–1094 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Kan, D., Moriyama, T., Kobayashi, K. & Shimakawa, Y. Alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO3. Phys. Rev. B 98, 180408(R) (2018).

    Article  Google Scholar 

  29. 29.

    Gerber, A. Interpretation of experimental evidence of the topological Hall effect. Phys. Rev. B 98, 214440 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Emori, S. et al. Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014).

    Article  Google Scholar 

  31. 31.

    Lemesh, I., Büttner, F. & Beach, G. S. D. Accurate model of the stripe domain phase of perpendicularly magnetized multilayers. Phys. Rev. B 95, 174423 (2017).

    Article  Google Scholar 

  32. 32.

    Heide, M. & Bihlmayer, G. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403(R) (2008).

    Article  Google Scholar 

  33. 33.

    Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Banerjee, S., Rowland, J., Erten, O. & Randeria, M. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling. Phys. Rev. X 4, 031045 (2014).

    Google Scholar 

  35. 35.

    Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Yang, S., Ryu, K. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Vélez, S. et al. High-speed domainwall racetracks in a magnetic insulator. Preprint at https://arxiv.org/abs/1902.05639 (2019).

Download references

Acknowledgements

This work was supported by the DARPA TEE program. The authors thank L. Liu for use of ion milling equipment. C.O.A. thanks A. Jun Tan for discussions.

Author information

Affiliations

Authors

Contributions

C.O.A., C.A.R. and G.S.D.B. conceived the project and planned the experiments. E.R. synthesized and characterized the TmIG and TbIG samples. C.O.A. deposited the metal layers and micro-fabricated the domain wall tracks. C.O.A., L.C., M.M., C.M. and D.B. prepared the experimental set-up. C.O.A. and L.C. performed the measurements. L.C. and F.B. modelled the domain wall dynamics. C.O.A. and G.S.D.B. analysed the data and wrote the manuscript. All authors contributed to the discussion of the data in the manuscript and Supplementary Information.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1,2, Supplementary Figure 1, Supplementary References 1–9

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avci, C.O., Rosenberg, E., Caretta, L. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019). https://doi.org/10.1038/s41565-019-0421-2

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research