Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing van der Waals interactions at two-dimensional heterointerfaces

Abstract

Two-dimensional (2D) heterostructures assembled via van der Waals (vdW) interactions have sparked immense interest in fields from physics1,2 to electronics3,4. Understanding the vdW interaction at these heterointerfaces is critical for the sophisticated construction and manipulation of these 2D heterostructures. However, previous experimental research has mainly focused on the interlayer interactions in homogeneous graphite crystals5,6 and the interactions between graphene and substrates7. Theoretically, although a variety of vdW methods have been incorporated in density functional theory to probe the interactions of homogeneous vdW crystals, the reliability of these vdW methods in 2D heterostructures remains to be verified. Here, we show, by contact-splitting transfer of graphite from hexagonal boron nitride (BN) to molybdenum disulfide (MoS2), that graphite experiences a stronger vdW interaction with MoS2 than with boron nitride. Quantitative measurements using a graphite-wrapped atomic force microscope tip show that the critical adhesion pressures between BN and graphite and MoS2 and graphite are respectively 0.953 and 1.028 times that between graphite and graphite. The results are consistent with the prediction based on Lifshitz theory, implying an important role of material dielectric function in the vdW interactions at heterointerfaces. These findings offer us more freedom in the construction of 2D heterostructures, and a technique to disassemble 2D heterostructures is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Critical adhesion force between 2D materials measured by an atomic force microscope.
Fig. 2: Contact-splitting competition test of BN–graphite–MoS2.
Fig. 3: Interlayer interactions calculated by DFT-based vdW methods.
Fig. 4: Interlayer force derived from Lifshitz theory.
Fig. 5: Disassembling the graphite–BN–graphite heterostructure, flake by flake, using MoS2 as a manipulator.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dean, C. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  2. Kumar, R. K. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).

    Article  Google Scholar 

  3. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  4. Chen, S. et al. Electron optics with pn junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys. Rev. B 85, 205418 (2012).

    Article  Google Scholar 

  6. Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679–683 (2015).

    Article  CAS  Google Scholar 

  7. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  8. Ishigami, M., Chen, J., Cullen, W., Fuhrer, M. & Williams, E. Atomic structure of graphene on SiO2. Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  9. Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

    Article  CAS  Google Scholar 

  10. Cuenot, S., Fretigny, C., Demoustier-Champagne, S. & Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004).

    Article  Google Scholar 

  11. Gould, T. et al. Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory. J. Chem. Phys. 139, 224704 (2013).

    Article  Google Scholar 

  12. You, Y., Ni, Z., Yu, T. & Shen, Z. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008).

    Article  Google Scholar 

  13. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article  CAS  Google Scholar 

  14. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  15. Tkatchenko, A., DiStasio, R. A. Jr, Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).

    Article  Google Scholar 

  16. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  17. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  18. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2009).

    Article  Google Scholar 

  19. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  20. Marom, N. et al. Many-body dispersion interactions in molecular crystal polymorphism. Angew. Chem. Int. Ed. 52, 6629–6632 (2013).

    Article  CAS  Google Scholar 

  21. Gao, W. & Tkatchenko, A. Electronic structure and van der Waals interactions in the stability and mobility of point defects in semiconductors. Phys. Rev. Lett. 111, 045501 (2013).

    Article  Google Scholar 

  22. Liu, X., Hermann, J. & Tkatchenko, A. Communication: many-body stabilization of non-covalent interactions. Structure, stability, and mechanics of Ag3Co(CN)6 framework. J. Chem. Phys. 145, 241101 (2016).

    Article  Google Scholar 

  23. Sapnik, A. et al. Uniaxial negative thermal expansion and metallophilicity in Cu3[Co(CN)6]. J. Solid State Chem. 258, 298–306 (2018).

    Article  CAS  Google Scholar 

  24. Tkatchenko, A., Rossi, M., Blum, V., Ireta, J. & Scheffler, M. Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. Phys. Rev. Lett. 106, 118102 (2011).

    Article  Google Scholar 

  25. Björkman, T., Gulans, A., Krasheninnikov, A. & Nieminen, R. Are we van der Waals ready? J. Phys. Condens. Matter 24, 424218 (2012).

    Article  Google Scholar 

  26. Sarabadani, J., Naji, A., Asgari, R. & Podgornik, R. Many-body effects in the van der Waals–Casimir interaction between graphene layers. Phys. Rev. B 84, 155407 (2011).

    Article  Google Scholar 

  27. Lifshitz, E. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956).

    Google Scholar 

  28. Harl, J. & Kresse, G. Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys. Rev. B 77, 045136 (2008).

    Article  Google Scholar 

  29. Parsegian, V. A. in Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists Ch. 2 (Cambridge Univ. Press, 2005).

  30. Kumar, A. & Ahluwalia, P. K. Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te): effect of quantum confinement. Physica B Phys. Condens. Matter 407, 4627–4634 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (grants nos. 51535005, 11702132, 51472117 and 51702159) and NSF of Jiangsu Province (grants nos. BK20170770 and BK20170791). The authors also acknowledge support from the China Postdoctoral Science Foundation (grants nos. 2016M600408, 2017T100362 and 2017M610328), Jiangsu Postdoctoral Research Funds (no. 1701141B), the Fundamental Research Funds for the Central Universities (no. NC2018001) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

W.G., J.Y. and B.L. designed the experimental strategy. B.L., J.Y. and H.W. performed the experiments. X. Liu designed and performed the theoretical study. All authors contributed to the analysis and discussion. W.G., B.L., J.Y. and X. Liu wrote the manuscript.

Corresponding author

Correspondence to Wanlin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Nature Nanotechnology thanks José María Gomez-Rodriguez, Kian Ping Loh and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Fig. 1–8 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yin, J., Liu, X. et al. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol. 14, 567–572 (2019). https://doi.org/10.1038/s41565-019-0405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0405-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing