Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir


Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot1,2. Depending on the tunnel-coupling strength3,4, this capability facilitates single spin quantum bits1,2,5 or coherent many-body interactions between the confined spin and the Fermi reservoir6,7. Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins8,9, tunnel barriers down to the atomic limit10 or a Fermi reservoir beyond the conventional flat density of states11. However, gate-control of vdW nanostructures12,13,14,15,16 at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Coulomb blockade in a vdW heterostructure device.
Fig. 2: Strong tunnel coupling between a quantum dot and a tunable Fermi reservoir in a vdW heterostructure.
Fig. 3: Strong tunnel coupling between a quantum dot and a tunable Fermi reservoir at high magnetic field.
Fig. 4: Magneto-optics of neutral and charged excitons in WSe2 quantum dots.

Data availability

Data described in this paper are presented in the Supplementary Materials and are available online at


  1. 1.

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

    Article  Google Scholar 

  4. 4.

    Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363–373 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Latta, C. et al. Quantum quench of Kondo correlations in optical absorption. Nature 474, 627–630 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  9. 9.

    Liu, G. B., Pang, H., Yao, Y. & Yao, W. Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides. New J. Phys. 16, 105011 (2014).

    Article  Google Scholar 

  10. 10.

    Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Fritz, L. & Vojta, M. The physics of Kondo impurities in graphene. Rep. Prog. Phys. 76, 032501 (2013).

    Article  Google Scholar 

  12. 12.

    Zhang, Z. Z. et al. Electrotunable artificial molecules based on van der Waals heterostructures. Sci. Adv. 3, e1701699 (2017).

    Article  Google Scholar 

  13. 13.

    Wang, K. et al. Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 13, 128–132 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567–7573 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Kern, J. et al. Nanoscale positioning of single‐photon emitters in atomically thin Wse2. Adv. Mat. 28, 7101–7105 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Palacios-Barraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    Article  Google Scholar 

  21. 21.

    Chakraborty, C. et al. Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 18, 2253–2258 (2017).

    Article  Google Scholar 

  22. 22.

    Roch, J. G. et al. Quantum-confined Stark effect in a MoS2 monolayer van der Waals heterostructure. Nano Lett. 18, 1070–1074 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Chakraborty, C. et al. 3D localized trions in monolayer WSe2 in a charge tunable van der Waals heterostructure. Nano Lett. 18, 2859–2863 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  25. 25.

    Govorov, A. O., Karrai, K. & Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 67, 241307(R) (2003).

    Article  Google Scholar 

  26. 26.

    Kleemans, N. A. J. M. et al. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea. Nat. Physics 6, 534–538 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Dalgarno, P. A. et al. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 100, 176801 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Anderson, P. W. Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967).

    CAS  Article  Google Scholar 

  29. 29.

    Helmes, R. W., Sindel, M., Borda, L. & von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B 72, 125301 (2005).

    Article  Google Scholar 

  30. 30.

    Binder, J. et al. Sub-bandgap voltage electroluminescence and magneto-oscillations in a WSe2 light-emitting van der Waals heterostructure. Nano Lett. 17, 1425–1430 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, S. et al. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3, 882–886 (2016).

    CAS  Article  Google Scholar 

Download references


This work is supported by the EPSRC (grant nos. EP/L015110/1, EP/P029892/1 and EP/M013472/1) and the ERC (grant nos. 307392 and 725920) and the EU Horizon 2020 research and innovation program under grant agreement no. 820423. Growth of hBN crystals by K.W. and T.T. was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (grant no. JPMJCR15F3), JST. Device fabrication by M.G. and K.S.B. was made possible with support the National Science Foundation, award no. DMR-1709987. B.D.G. is supported by a Wolfson Merit Award from the Royal Society and a Chair in Emerging Technology from the Royal Academy of Engineering.

Author information




B.D.G. conceived and supervised the project. A.B. fabricated the samples, assisted by S.K., R. Picard, M.G. and K.S.B. K.W. and T.T. supplied the hBN crystals. M.B.-G. and A.B. performed the experiments, assisted by S.K. and R. Proux. M.B.-G. analysed the data and developed the theoretical model, assisted by B.D.G. M.B.-G. and B.D.G. cowrote the paper with input from all authors.

Corresponding authors

Correspondence to Mauro Brotons-Gisbert or Brian D. Gerardot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brotons-Gisbert, M., Branny, A., Kumar, S. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research