Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data associated with the reported findings are available in the manuscript or the Supplementary Information. Other related data are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Dietrich-Buchecker, C., Jimenez-Molero, M. C., Sartor, V. & Sauvage, J.-P. Rotaxanes and catenanes as prototypes of molecular machines and motors. Pure Appl. Chem. 75, 1383–1393 (2003).

  2. 2.

    Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines: A Journey into the Nano World (Wiley-VCH, 2003).

  3. 3.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

  4. 4.

    Vives, G., De Rouville, H. P. J., Carella, A., Launay, J. P. & Rapenne, G. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 38, 1551–1561 (2009).

  5. 5.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

  6. 6.

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

  7. 7.

    Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

  8. 8.

    Schliwa, M. Molecular Motors (Wiley-VCH, 2003).

  9. 9.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

  10. 10.

    van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

  11. 11.

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

  12. 12.

    Huang, T. J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2004).

  13. 13.

    Koumura, N., Zijlstra, R. W. J., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

  14. 14.

    Koumura, N., Geertsema, E. M., Meetsma, A. & Feringa, B. L. Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000).

  15. 15.

    Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

  16. 16.

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

  17. 17.

    Pijper, D., Jongejan, M. G. M., Meetsma, A. & Feringa, B. L. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J. Am. Chem. Soc. 130, 4541–4552 (2008).

  18. 18.

    Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

  19. 19.

    Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

  20. 20.

    Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

  21. 21.

    Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

  22. 22.

    Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

  23. 23.

    Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

  24. 24.

    Chen, K. Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

  25. 25.

    Kaleta, J. et al. Surface inclusion of unidirectional molecular motors in hexagonal tris(O-phenylene)cyclotriphosphazene. J. Am. Chem. Soc. 139, 10486–10498 (2017).

  26. 26.

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

  27. 27.

    Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

  28. 28.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

  29. 29.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

  30. 30.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

  31. 31.

    Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. The amphidynamic character of crystalline MOF-5: rotational dynamics in a free-volume environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

  32. 32.

    Bracco, S. et al. CO2 regulates molecular rotor dynamics in porous materials. Chem. Commun. 53, 7776–7779 (2017).

  33. 33.

    Bracco, S. et al. Ultrafast molecular rotors and their CO2 tuning in MOFs with rod-like ligands. Chem. Eur. J. 23, 11210–11215 (2017).

  34. 34.

    Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

  35. 35.

    Damron, J. T. et al. The influence of chemical modification on linker rotational dynamics in metal organic frameworks. Angew. Chem. Int. Ed. 57, 8678–8681 (2018).

  36. 36.

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

  37. 37.

    Zhu, K., Vukotic, V. N., Okeefe, C. A., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014).

  38. 38.

    Vukotic, V. N. et al. Mechanically interlocked linkers inside metal−organic frameworks: effect of ring size on rotational dynamics. J. Am. Chem. Soc. 137, 9643–9651 (2015).

  39. 39.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem 7, 514–519 (2015).

  40. 40.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

  41. 41.

    Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in metal–organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 132, 950–952 (2010).

  42. 42.

    Madrahimov, S. T. et al. Metal–organic frameworks containing (alkynyl)gold functionalities: a comparative evaluation of solvent-assisted linker exchange, de novo synthesis, and post-synthesis modification. Cryst. Growth Des. 14, 6320–6324 (2014).

  43. 43.

    Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angew. Chem. Int. Ed. 53, 4530–4540 (2014).

  44. 44.

    Bury, W. et al. Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange. Chem. Mater. 25, 739–744 (2013).

  45. 45.

    Karagiaridi, O. et al. Opening metal–organic frameworks. Vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange. Chem. Mater. 25, 3499–3503 (2013).

  46. 46.

    Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 4, 547–551 (2012).

  47. 47.

    Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009).

  48. 48.

    Huang, H., Sato, H. & Aida, T. Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion? J. Am. Chem. Soc. 139, 8784–8787 (2017).

  49. 49.

    Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858 (2013).

  50. 50.

    Williams, D. E. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611–7622 (2018).

  51. 51.

    Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).

  52. 52.

    Jones, C. L., Tansell, A. J. & Easun, T. L. The lighter side of MOFs: structurally photoresponsive metal–organic frameworks. J. Mater. Chem. A 4, 6714–6723 (2016).

  53. 53.

    Tinnemans, S. J. et al. Dealing with a local heating effect when measuring catalytic solids in a reactor with Raman spectroscopy. Phys. Chem. Chem. Phys. 8, 2413 (2006).

Download references


This work was supported financially by the Netherlands Organisation for Scientific Research (NWO), the European Research Council (ERC, advanced grant no. 694345 to B.L.F.), the Ministry of Education, Culture and Science (Gravitation Program no. 024.001.035). The authors thank P. van der Meulen for assistance with NMR irradiation experiments, J. Baas for help with acquiring PXRD, M. Lutz and E. Otten for measurement and analysis of single crystal X-ray data and F. (K.-C.) Leung for making the 3D model of the moto-MOF. The authors thank the University of Groningen for access to the Peregrine Computing Cluster.

Author information


  1. Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands

    • Wojciech Danowski
    • , Thomas van Leeuwen
    • , Diederik Roke
    • , Wesley R. Browne
    • , Sander J. Wezenberg
    •  & Ben L. Feringa
  2. Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands

    • Shaghayegh Abdolahzadeh
    •  & Wesley R. Browne


  1. Search for Wojciech Danowski in:

  2. Search for Thomas van Leeuwen in:

  3. Search for Shaghayegh Abdolahzadeh in:

  4. Search for Diederik Roke in:

  5. Search for Wesley R. Browne in:

  6. Search for Sander J. Wezenberg in:

  7. Search for Ben L. Feringa in:


W.D., S.J.W. and B.L.F. conceived the project. W.D. and D.R. synthesized compounds and W.D. carried out studies in solution. W.D., S.A. and W.R.B. performed Raman micro-spectroscopy studies of the solid material. W.D and T.v.L. performed DFT studies. S.J.W., W.R.B. and B.L.F. guided the project. W.D., T.v.L., S.J.W. and B.L.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Wesley R. Browne or Sander J. Wezenberg or Ben L. Feringa.

Supplementary information

  1. Supplementary information

    Supplementary Figures 1–84; Supplementary Schemes 1,2

About this article

Publication history