Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unidirectional rotary motion in a metal–organic framework

Abstract

Overcrowded alkene-based light-driven molecular motors are able to perform large-amplitude repetitive unidirectional rotations. Their behaviour is well understood in solution. However, Brownian motion precludes the precise positioning at the nanoscale needed to harness cooperative action. Here, we demonstrate molecular motors organized in crystalline metal–organic frameworks (MOFs). The motor unit becomes a part of the organic linker (or strut), and its spatial arrangement is elucidated through powder and single-crystal X-ray analyses and polarized optical and Raman microscopies. We confirm that the light-driven unidirectional rotation of the motor units is retained in the MOF framework and that the motors can operate in the solid state with similar rotary speed (rate of thermal helix inversion) to that in solution. These ‘moto-MOFs’ could in the future be used to control dynamic function in crystalline materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design of the moto-MOF.
Fig. 2: Schematic representation of the synthesis of the moto-MOFs.
Fig. 3: Structure of moto-MOF1 material.
Fig. 4: Photochemical and thermal isomerization of 1 in solution.
Fig. 5: Photochemical and thermal isomerization studies of 1 in moto-MOF1.

Data availability

The data associated with the reported findings are available in the manuscript or the Supplementary Information. Other related data are available from the corresponding author upon request.

References

  1. 1.

    Dietrich-Buchecker, C., Jimenez-Molero, M. C., Sartor, V. & Sauvage, J.-P. Rotaxanes and catenanes as prototypes of molecular machines and motors. Pure Appl. Chem. 75, 1383–1393 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines: A Journey into the Nano World (Wiley-VCH, 2003).

  3. 3.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Vives, G., De Rouville, H. P. J., Carella, A., Launay, J. P. & Rapenne, G. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 38, 1551–1561 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Schliwa, M. Molecular Motors (Wiley-VCH, 2003).

  9. 9.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Article  Google Scholar 

  11. 11.

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  12. 12.

    Huang, T. J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Koumura, N., Zijlstra, R. W. J., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Koumura, N., Geertsema, E. M., Meetsma, A. & Feringa, B. L. Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    Pijper, D., Jongejan, M. G. M., Meetsma, A. & Feringa, B. L. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J. Am. Chem. Soc. 130, 4541–4552 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  Google Scholar 

  21. 21.

    Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  Google Scholar 

  24. 24.

    Chen, K. Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Kaleta, J. et al. Surface inclusion of unidirectional molecular motors in hexagonal tris(O-phenylene)cyclotriphosphazene. J. Am. Chem. Soc. 139, 10486–10498 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  31. 31.

    Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. The amphidynamic character of crystalline MOF-5: rotational dynamics in a free-volume environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Bracco, S. et al. CO2 regulates molecular rotor dynamics in porous materials. Chem. Commun. 53, 7776–7779 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Bracco, S. et al. Ultrafast molecular rotors and their CO2 tuning in MOFs with rod-like ligands. Chem. Eur. J. 23, 11210–11215 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Damron, J. T. et al. The influence of chemical modification on linker rotational dynamics in metal organic frameworks. Angew. Chem. Int. Ed. 57, 8678–8681 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Zhu, K., Vukotic, V. N., Okeefe, C. A., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. J. Am. Chem. Soc. 136, 7403–7409 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Vukotic, V. N. et al. Mechanically interlocked linkers inside metal−organic frameworks: effect of ring size on rotational dynamics. J. Am. Chem. Soc. 137, 9643–9651 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem 7, 514–519 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in metal–organic frameworks via rational design of the organic building block. J. Am. Chem. Soc. 132, 950–952 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Madrahimov, S. T. et al. Metal–organic frameworks containing (alkynyl)gold functionalities: a comparative evaluation of solvent-assisted linker exchange, de novo synthesis, and post-synthesis modification. Cryst. Growth Des. 14, 6320–6324 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angew. Chem. Int. Ed. 53, 4530–4540 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Bury, W. et al. Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange. Chem. Mater. 25, 739–744 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Karagiaridi, O. et al. Opening metal–organic frameworks. Vol. 2: Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange. Chem. Mater. 25, 3499–3503 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 4, 547–551 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Huang, H., Sato, H. & Aida, T. Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion? J. Am. Chem. Soc. 139, 8784–8787 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Williams, D. E. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611–7622 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Jones, C. L., Tansell, A. J. & Easun, T. L. The lighter side of MOFs: structurally photoresponsive metal–organic frameworks. J. Mater. Chem. A 4, 6714–6723 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Tinnemans, S. J. et al. Dealing with a local heating effect when measuring catalytic solids in a reactor with Raman spectroscopy. Phys. Chem. Chem. Phys. 8, 2413 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Netherlands Organisation for Scientific Research (NWO), the European Research Council (ERC, advanced grant no. 694345 to B.L.F.), the Ministry of Education, Culture and Science (Gravitation Program no. 024.001.035). The authors thank P. van der Meulen for assistance with NMR irradiation experiments, J. Baas for help with acquiring PXRD, M. Lutz and E. Otten for measurement and analysis of single crystal X-ray data and F. (K.-C.) Leung for making the 3D model of the moto-MOF. The authors thank the University of Groningen for access to the Peregrine Computing Cluster.

Author information

Affiliations

Authors

Contributions

W.D., S.J.W. and B.L.F. conceived the project. W.D. and D.R. synthesized compounds and W.D. carried out studies in solution. W.D., S.A. and W.R.B. performed Raman micro-spectroscopy studies of the solid material. W.D and T.v.L. performed DFT studies. S.J.W., W.R.B. and B.L.F. guided the project. W.D., T.v.L., S.J.W. and B.L.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wesley R. Browne or Sander J. Wezenberg or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–84; Supplementary Schemes 1,2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danowski, W., van Leeuwen, T., Abdolahzadeh, S. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019). https://doi.org/10.1038/s41565-019-0401-6

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research