Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal–oxide–semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 μm and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Journal peer review information Nature Nanotechnology thanks Ferran Macià, Takuya Satoh and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Bloch, F. Zur theorie des ferromagnetismus. Z. Phys. 61, 206–209 (1930).

  2. 2.

    Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

  3. 3.

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

  4. 4.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

  5. 5.

    Lan, J., Yu, W., Wu, R. & Xiao, J. Spin-wave diode. Phys. Rev. X 5, 041049 (2015).

  6. 6.

    Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, New York, 1996).

  7. 7.

    Oliner, A. A. Acoustic Surface Waves (Springer, Berlin, 1978).

  8. 8.

    Morgan, D. R. Surface acoustic wave devices and applications: 1. Introductory review. Ultrasonics 11, 121–131 (1973).

  9. 9.

    Lee, K.-S., Choi, S. & Kim, S.-K. Radiation of spin waves from magnetic vortex cores by their dynamic motion and annihilation processes. Appl. Phys. Lett. 87, 192502 (2005).

  10. 10.

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibirum magnons at room temperature under pumping. Nature 443, 430–433 (2006).

  11. 11.

    Davies, C. S., Poimanov, V. D. & Kruglyak, V. V. Mapping the magnonic landscape in patterned magnetic structures. Phys. Rev. 96, 094439 (2017).

  12. 12.

    Mozooni, B. & McCord, J. Direct observation of closure domain wall mediated spin waves. Appl. Phys. Lett. 107, 042402 (2015).

  13. 13.

    Wiele, B. V., Hämäläinen, S. J., Baláz, P., Montoncello, F. & Dijken, S. V. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls. Sci. Rep. 6, 21330 (2016).

  14. 14.

    Whitehead, N. J., Horsley, S. A. R., Philbin, T. G., Kuchko, A. N. & Kruglyak, V. V. Theory of linear spin wave emission from a Bloch domain wall. Phys. Rev. B 96, 064415 (2017).

  15. 15.

    Hermsdoerfer, S. J. et al. A spin-wave frequency doubler by domain wall oscillation. Appl. Phys. Lett. 94, 223510 (2009).

  16. 16.

    Holländer, R. B., Müller, C., Schmalz, J., Gerken, M. & McCord, J. Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters. Sci. Rep. 8, 13871 (2018).

  17. 17.

    Sluka, V et al.in Stacked topological spin textures as emitters for multidimensional spin wave modes. IEEE International Magnetics Conference (INTERMAG) https://doi.org/10.1109/INTMAG.2015.7157029 (IEEE, 2015).

  18. 18.

    Garcia-Sanchez, F. et al. Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015).

  19. 19.

    Wagner, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016).

  20. 20.

    Albisetti, E. et al. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Commun. Phys. 1, 56 (2018).

  21. 21.

    Aliev, F. G. et al. Localized domain-wall excitations in patterned magnetic dots probed by broadband ferromagnetic resonance. Phys. Rev. B 84, 144406 (2011).

  22. 22.

    Vogt, K. et al. Realization of a spin-wave multiplexer. Nat. Commun. 5, 3727 (2014).

  23. 23.

    Gruszecki, P., Kasprzak, M., Serebryannikov, A. E., Krawczyk, M. & Smigaj, W. Microwave excitation of spin wave beams in thin ferromagnetic films. Sci. Rep. 6, 22367 (2016).

  24. 24.

    Albisetti, E. et al. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol. 11, 545–551 (2016).

  25. 25.

    Haldar, A., Kumar, D. & Adeyeye, A. O. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotechnol. 11, 437–443 (2016).

  26. 26.

    Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin–torque nano-oscillators. Nat. Mater. 9, 984–988 (2010).

  27. 27.

    Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotechnol. 6, 635–638 (2011).

  28. 28.

    Urazhdin, S. et al. Nanomagnetic devices based on the spin–transfer torque. Nat. Nanotechnol. 9, 509–513 (2014).

  29. 29.

    Bonetti, S. et al. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nat. Commun. 6, 8889 (2015).

  30. 30.

    Yu, H. et al. Omnidirectional spin-wave nanograting coupler. Nat. Commun. 4, 2702 (2013).

  31. 31.

    Yu, H. et al. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016).

  32. 32.

    Hämäläinen, S. J., Brandl, F., Franke, K. J. A., Grundler, D. & van Dijken, S. Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys. Rev. Appl. 8, 014020 (2017).

  33. 33.

    Voto, M., Lopez-Diaz, L. & Martinez, E. Pinned domain wall oscillator as tunable direct current spin wave emitter. Sci. Rep. 7, 13559 (2017).

  34. 34.

    Wintz, S. et al. Magnetic vortex cores as tunable spin wave emitters. Nat. Nanotechnol. 11, 948–953 (2016).

  35. 35.

    Dieterle, G. et al. Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths. Preprint at https://arxiv.org/abs/1712.00681 (2017).

  36. 36.

    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

  37. 37.

    Thiele, A. A. Steady-state of motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973).

  38. 38.

    Choe, S.-B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

  39. 39.

    Xing, X. & Zhou, Y. Fiber optics for spin waves. NPG Asia Mater. 8, e246 (2016).

  40. 40.

    Winter, J. M. Bloch wall excitation. Application to nuclear resonance in a Bloch wall. Phys. Rev. 124, 452 (1961).

  41. 41.

    Stoll, H. et al. High-resolution imaging of fast magnetization dynamics in magnetic nanostructures. Appl. Phys. Lett. 84, 3328 (2004).

  42. 42.

    Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442 (1986).

  43. 43.

    Labrune, M. & Miltat, J. Wall structures in ferro/antiferromagnetic exchange-coupled bilayers: a numerical micromagnetic approach. J. Magn. Magn. Mater. 151, 231–245 (1995).

  44. 44.

    Groß, F. et al. Nanoscale detection of spin wave deflection angles in permalloy. Appl. Phys. Lett. 114, 012406 (2019).

  45. 45.

    Stamps, R. L., Carriço, A. S. & Wigen, P. E. Domain-wall resonance in exchange-coupled magnetic films. Phys. Rev. B 55, 6473–6484 (1997).

  46. 46.

    Wang, D., Nordman, C., Qian, Z., Daughton, J. M. & Myers, J. Magnetostriction effect of amorphous CoFeB thin films and application in spin-dependent tunnel junctions. J. Appl. Phys. 97, 10C906 (2005).

  47. 47.

    Grünberg, P. Magnetostatic spinwave modes of a heterogeneous ferromagnetic double layer. J. Appl. Phys. 52, 6824–6829 (1981).

  48. 48.

    Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnetic slab. J. Phys. Chem. Solids. 19, 308–320 (1961).

  49. 49.

    Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015).

  50. 50.

    Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965–970 (1962).

  51. 51.

    Wintz, S. et al. Control of vortex pair states by post-deposition interlayer exchange coupling modification. Phys. Rev. B 85, 134417 (2012).

  52. 52.

    Raabe, J. et al. PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev. Sci. Instrum. 79, 113704 (2008).

  53. 53.

    Schütz, G. et al. Absorption of circularly polarized X rays in iron. Phys. Rev. Lett. 58, 737–740 (1987).

  54. 54.

    Landau, L. & Lifshits, E. On the theory of the dispersion of magnetic permeability in ferromgnetic bodies. Phys. Z. Sow. 8, 135 (1935).

  55. 55.

    Gilbert, T. L. A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955).

  56. 56.

    Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

  57. 57.

    Wei, J. et al. Annealing influence on the exchange stiffness constant of permalloy films with stripe domains. J. Phys. D 49, 265002 (2016).

  58. 58.

    Conca, A. et al. Annealing influence on the Gilbert damping parameter and the exchange constant of CoFeB films. Appl. Phys. Lett. 104, 182407 (2014).

Download references


The authors thank B. Sarafimov, B. Watts and M. Bechtel for experimental support at the STXM beamlines, as well as C. Fowley, K. Kirsch, B. Scheumann and C. Neisser for their help with sample fabrication. Most of the experiments were performed at the Maxymus endstation at BESSY2, HZB, Berlin, Germany. The authors thank HZB for the allocation of synchrotron radiation beamtime. Some experiments were performed at the PolLux endstation at SLS, PSI, Villigen, Switzerland. Pollux is financed by BMBF via contracts 05KS4WE1/6 and 05KS7WE1. Support by the Nanofabrication Facilities Rossendorf at IBC, HZDR, Dresden, Germany is gratefully acknowledged. V.S. and A.D. acknowledge funding from the Helmholtz Young Investigator Initiative under grant VH-N6-1048. R.A.G. acknowledges financial support from FONDECYT Iniciacion 11170736 and 1161403. A.R.M. acknowledges funding from FONDECYT 3170647; funding from the Basal Program for Centers of Excellence, grant FB0807 CEDENNA, CONICYT is also acknowledged. V.T. and A.S. acknowledge support from the US National Science Foundation under grants EFMA-1641989 and ECCS-1708982 and from the DARPA M3IC grant under contract no. W911-17-C-0031. S.W. acknowledges funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 290605 (PSI-FELLOW/COFUND).

Author information

Author notes

    • Tobias Warnatz

    Present address: Uppsala Universitet, Uppsala, Sweden


  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

    • Volker Sluka
    • , Tobias Schneider
    • , Attila Kákay
    • , Tobias Warnatz
    • , Artur Erbe
    • , Alina Deac
    • , Jürgen Lindner
    • , Jürgen Fassbender
    •  & Sebastian Wintz
  2. Universidad Técnica Federico Santa María, Valparaíso, Chile

    • Rodolfo A. Gallardo
    •  & Pedro Landeros
  3. Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile

    • Rodolfo A. Gallardo
    •  & Pedro Landeros
  4. Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany

    • Markus Weigand
    •  & Gisela Schütz
  5. Leibniz Institut für Photonische Technologien, Jena, Germany

    • Roland Mattheis
  6. Universidad de Aysén, Coyhaique, Chile

    • Alejandro Roldán-Molina
  7. Oakland University, Rochester, MI, USA

    • Vasil Tiberkevich
    •  & Andrei Slavin
  8. Paul Scherrer Institut, Villigen, PSI, Switzerland

    • Jörg Raabe
    •  & Sebastian Wintz
  9. Technische Universität Dresden, Dresden, Germany

    • Jürgen Fassbender


  1. Search for Volker Sluka in:

  2. Search for Tobias Schneider in:

  3. Search for Rodolfo A. Gallardo in:

  4. Search for Attila Kákay in:

  5. Search for Markus Weigand in:

  6. Search for Tobias Warnatz in:

  7. Search for Roland Mattheis in:

  8. Search for Alejandro Roldán-Molina in:

  9. Search for Pedro Landeros in:

  10. Search for Vasil Tiberkevich in:

  11. Search for Andrei Slavin in:

  12. Search for Gisela Schütz in:

  13. Search for Artur Erbe in:

  14. Search for Alina Deac in:

  15. Search for Jürgen Lindner in:

  16. Search for Jörg Raabe in:

  17. Search for Jürgen Fassbender in:

  18. Search for Sebastian Wintz in:


S.W. conceived the experiment. V.S., M.W. and S.W. performed the STXM measurements. V.S. and S.W. analysed the data. T.S., T.W., A.K. and S.W. conducted the micromagnetic simulations. R.A.G., A.R.M. and P.L. calculated the spin wave dispersion relation. R.M. and S.W. supervised sample preparation. V.S. and S.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Volker Sluka or Sebastian Wintz.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3

  2. Supplementary Movie 1

    Plane and circular waves excited at 1.11 GHz, with left and right panels showing absolute and normalized contrast, respectively.

  3. Supplementary Movie 2

    Plane and circular waves excited at 1.46 GHz, with left and right panels showing absolute and normalized contrast, respectively.

  4. Supplementary Movie 3

    Plane and circular wave interference at the centre region for the different layers NiFe (top), CoFeB (middle) and the cumulative signal of Fe (bottom), with left and right panels showing absolute and normalized contrast, respectively.

  5. Supplementary Movie 4

    Spin-waves in domain walls with absolute (left) and normalized (right) contrast at 500 MHz (top) and 250 MHz (bottom).

  6. Supplementary Movie 5

    Spin-waves in domain walls excited by a pulse, with absolute (left) and normalized (right) contrast.

  7. Supplementary Movie 6

    Spin wave packet traveling along a curved domain wall (normalized contrast).

  8. Supplementary Movie 7

    Micromagnetic simulation of spin waves in a domain wall (normalized contrast).

About this article

Publication history