Article | Published:

Quantum electromechanics of a hypersonic crystal


Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author (O.P.) upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

  2. 2.

    Pirkkalainen, J. M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

  3. 3.

    Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).

  4. 4.

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

  5. 5.

    Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

  6. 6.

    Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

  7. 7.

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

  8. 8.

    Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).

  9. 9.

    Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

  10. 10.

    Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

  11. 11.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

  12. 12.

    Balram, K. C., Davanco, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

  13. 13.

    Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

  14. 14.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

  15. 15.

    Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664 (2008).

  16. 16.

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

  17. 17.

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010).

  18. 18.

    Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

  19. 19.

    Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

  20. 20.

    Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

  21. 21.

    Satzinger, K. J. et al. Quantum control of surface acoustic wave phonons. Nature 563, 661–665 (2018).

  22. 22.

    Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).

  23. 23.

    Arrangoiz-Arriola, P. et al. Coupling a superconducting quantum circuit to a phononic crystal defect cavity. Phys. Rev. X 8, 031007 (2018).

  24. 24.

    Eom, C.-B. & Trolier-McKinstry, S. Thin-film piezoelectric mems. MRS Bull. 37, 1007–1017 (2012).

  25. 25.

    Piazza, G., Felmetsger, V., Muralt, P., Olsson, R. H.III. & Ruby, R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37, 1051–1061 (2012).

  26. 26.

    Han, X., Zou, C.-L. & Tang, H. X. Multimode strong coupling in superconducting cavity piezoelectromechanics. Phys. Rev. Lett. 117, 123603 (2016).

  27. 27.

    Arrangoiz-Arriola, P. & Safavi-Naeini, A. Engineering interactions between superconducting qubits and phononic nanostructures. Phys. Rev. A 94, 063864 (2016).

  28. 28.

    Phillips, W. A. Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351–360 (1972).

  29. 29.

    Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489 (2016).

  30. 30.

    Patel, R. N. et al. Single-mode phononic wire. Phys. Rev. Lett. 121, 040501 (2018).

  31. 31.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  32. 32.

    Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

  33. 33.

    Fink, J. M. et al. Quantum electromechanics on silicon nitride nanomembranes. Nat. Commun. 7, 12396 (2016).

  34. 34.

    Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010).

  35. 35.

    Dobrindt, J. M. & Kippenberg, T. J. Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. Phys. Rev. Lett. 104, 033901 (2010).

  36. 36.

    Dieterle, P. B., Kalaee, M., Fink, J. M. & Painter, O. Superconducting cavity electromechanics on a silicon-on-insulator platform. Phys. Rev. Appl. 6, 014013 (2016).

  37. 37.

    Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

  38. 38.

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

  39. 39.

    Zhang, Y., Moser, J., Güttinger, J., Bachtold, A. & Dykman, M. I. Interplay of driving and frequency noise in the spectra of vibrational systems. Phys. Rev. Lett. 113, 255502 (2014).

  40. 40.

    Zhang, Y. & Dykman, M. I. Spectral effects of dispersive mode coupling in driven mesoscopic systems. Phys. Rev. B 92, 165419 (2015).

  41. 41.

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

  42. 42.

    Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

  43. 43.

    Barends, R. et al. Reduced frequency noise in superconducting resonators. Appl. Phys. Lett. 97, 033507 (2010).

  44. 44.

    Rouxinol, F. et al. Measurements of nanoresonator–qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27, 364003 (2016).

Download references


This work was supported by the AFOSR MURI Wiring Quantum Networks with Mechanical Transducers (grant FA9550-15-1-0015), the ARO-LPS Cross-Quantum Technology Systems programme (grant W911NF-18-1-0103), the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (grant PHY-1125565) with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. M.M. acknowledges support from a KNI Postdoctoral Fellowship. J.M.F. acknowledges support from an IQIM Postdoctoral Fellowship.

Author information

M.K., J.M.F. and O.P. came up with the concept and planned the experiment. M.K., P.B.D., M.M., M.P., J.M.K. and O.P. designed and fabricated the device. M.K., M.M. and O.P. performed the measurements and analysed the data. All authors contributed to the writing of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Oskar Painter.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6, Supplementary Notes 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Nanobeam phononic crystal design.
Fig. 2: Phononic crystal shield.
Fig. 3: Fabricated structure.
Fig. 4: Microwave electromechanical spectroscopy.
Fig. 5: Mechanical ringdown and electromechanical coupling.
Fig. 6: Frequency jitter noise and mode occupancy.