Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum electromechanics of a hypersonic crystal

Abstract

Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Nanobeam phononic crystal design.
Fig. 2: Phononic crystal shield.
Fig. 3: Fabricated structure.
Fig. 4: Microwave electromechanical spectroscopy.
Fig. 5: Mechanical ringdown and electromechanical coupling.
Fig. 6: Frequency jitter noise and mode occupancy.

Data availability

The data that support the findings of this study are available from the corresponding author (O.P.) upon reasonable request.

References

  1. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    CAS  Article  Google Scholar 

  2. Pirkkalainen, J. M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    Article  Google Scholar 

  3. Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).

    CAS  Google Scholar 

  4. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    CAS  Article  Google Scholar 

  5. Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    CAS  Article  Google Scholar 

  6. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

    CAS  Article  Google Scholar 

  7. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    CAS  Article  Google Scholar 

  8. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).

    CAS  Article  Google Scholar 

  9. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  Google Scholar 

  10. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    CAS  Article  Google Scholar 

  11. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    CAS  Article  Google Scholar 

  12. Balram, K. C., Davanco, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    CAS  Article  Google Scholar 

  13. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    CAS  Article  Google Scholar 

  14. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    CAS  Article  Google Scholar 

  15. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664 (2008).

    CAS  Article  Google Scholar 

  16. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    CAS  Article  Google Scholar 

  17. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010).

    Article  Google Scholar 

  18. Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    CAS  Article  Google Scholar 

  19. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    CAS  Article  Google Scholar 

  20. Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

    Article  Google Scholar 

  21. Satzinger, K. J. et al. Quantum control of surface acoustic wave phonons. Nature 563, 661–665 (2018).

    CAS  Article  Google Scholar 

  22. Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).

    CAS  Article  Google Scholar 

  23. Arrangoiz-Arriola, P. et al. Coupling a superconducting quantum circuit to a phononic crystal defect cavity. Phys. Rev. X 8, 031007 (2018).

    CAS  Google Scholar 

  24. Eom, C.-B. & Trolier-McKinstry, S. Thin-film piezoelectric mems. MRS Bull. 37, 1007–1017 (2012).

    CAS  Article  Google Scholar 

  25. Piazza, G., Felmetsger, V., Muralt, P., Olsson, R. H.III. & Ruby, R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 37, 1051–1061 (2012).

    CAS  Article  Google Scholar 

  26. Han, X., Zou, C.-L. & Tang, H. X. Multimode strong coupling in superconducting cavity piezoelectromechanics. Phys. Rev. Lett. 117, 123603 (2016).

    Article  Google Scholar 

  27. Arrangoiz-Arriola, P. & Safavi-Naeini, A. Engineering interactions between superconducting qubits and phononic nanostructures. Phys. Rev. A 94, 063864 (2016).

    Article  Google Scholar 

  28. Phillips, W. A. Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351–360 (1972).

    CAS  Article  Google Scholar 

  29. Fang, K., Matheny, M. H., Luan, X. & Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photon. 10, 489 (2016).

    CAS  Article  Google Scholar 

  30. Patel, R. N. et al. Single-mode phononic wire. Phys. Rev. Lett. 121, 040501 (2018).

    CAS  Article  Google Scholar 

  31. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  32. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

    Article  Google Scholar 

  33. Fink, J. M. et al. Quantum electromechanics on silicon nitride nanomembranes. Nat. Commun. 7, 12396 (2016).

    CAS  Article  Google Scholar 

  34. Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010).

    CAS  Article  Google Scholar 

  35. Dobrindt, J. M. & Kippenberg, T. J. Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. Phys. Rev. Lett. 104, 033901 (2010).

    CAS  Article  Google Scholar 

  36. Dieterle, P. B., Kalaee, M., Fink, J. M. & Painter, O. Superconducting cavity electromechanics on a silicon-on-insulator platform. Phys. Rev. Appl. 6, 014013 (2016).

    Article  Google Scholar 

  37. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    CAS  Article  Google Scholar 

  38. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    CAS  Article  Google Scholar 

  39. Zhang, Y., Moser, J., Güttinger, J., Bachtold, A. & Dykman, M. I. Interplay of driving and frequency noise in the spectra of vibrational systems. Phys. Rev. Lett. 113, 255502 (2014).

    Article  Google Scholar 

  40. Zhang, Y. & Dykman, M. I. Spectral effects of dispersive mode coupling in driven mesoscopic systems. Phys. Rev. B 92, 165419 (2015).

    Article  Google Scholar 

  41. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  Google Scholar 

  42. Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

    Article  Google Scholar 

  43. Barends, R. et al. Reduced frequency noise in superconducting resonators. Appl. Phys. Lett. 97, 033507 (2010).

    Article  Google Scholar 

  44. Rouxinol, F. et al. Measurements of nanoresonator–qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27, 364003 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the AFOSR MURI Wiring Quantum Networks with Mechanical Transducers (grant FA9550-15-1-0015), the ARO-LPS Cross-Quantum Technology Systems programme (grant W911NF-18-1-0103), the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (grant PHY-1125565) with support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. M.M. acknowledges support from a KNI Postdoctoral Fellowship. J.M.F. acknowledges support from an IQIM Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.K., J.M.F. and O.P. came up with the concept and planned the experiment. M.K., P.B.D., M.M., M.P., J.M.K. and O.P. designed and fabricated the device. M.K., M.M. and O.P. performed the measurements and analysed the data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Notes 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalaee, M., Mirhosseini, M., Dieterle, P.B. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334–339 (2019). https://doi.org/10.1038/s41565-019-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0377-2

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research