Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging the academic and industrial metrics for next-generation practical batteries

Abstract

Batteries have shaped much of our modern world. This success is the result of intense collaboration between academia and industry over the past several decades, culminating with the advent of and improvements in rechargeable lithium-ion batteries. As applications become more demanding, there is the risk that stunted growth in the performance of commercial batteries will slow the adoption of important technologies such as electric vehicles. Yet the scientific literature includes many reports describing material designs with allegedly superior performance. A considerable gap needs to be filled if we wish these laboratory-based achievements to reach commercialization. In this Perspective, we discuss some of the most relevant testing parameters that are often overlooked in academic literature but are critical for practical applicability outside the laboratory. We explain metrics such as anode energy density, voltage hysteresis, mass of non-active cell components and anode/cathode mass ratio, and we make recommendations for future reporting. We hope that this Perspective, together with other similar guiding principles that have recently started to emerge, will aid the transition from lab-scale research to next-generation practical batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1 Voltage to energy density
Fig. 2: Testing parameters in the Li–S battery system.
Fig. 3: Schematic of the differences between the three experimental methods for evaluating Coulombic efficiency.
Fig. 4: Schematic of the operando coin-cell set-up used for X-ray diffraction studies.

Similar content being viewed by others

References

  1. Kasavajjula, U., Wang, C. S. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

    CAS  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  3. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  4. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377 (2016).

    CAS  Google Scholar 

  5. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    CAS  Google Scholar 

  6. Cui, L. F., Yang, Y., Hsu, C. M. & Cui, Y. Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    CAS  Google Scholar 

  7. Cui, L. F., Ruffo, R., Chan, C. K., Peng, H. L. & Cui, Y. Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009).

    CAS  Google Scholar 

  8. Li, X. L. et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 7 (2014).

    Google Scholar 

  9. Feng, K. et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14, 1702737 (2018).

    Google Scholar 

  10. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).

    CAS  Google Scholar 

  11. Attia, E. N. et al. Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. J. Mater. Chem. A 5, 24159–24167 (2017).

    CAS  Google Scholar 

  12. Cao, K., Jin, T., Yang, L. & Jiao, L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 1, 2213–2242 (2017).

    CAS  Google Scholar 

  13. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618 (2014).

    CAS  Google Scholar 

  14. Yang, Y., Zheng, G. Y. & Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013).

    CAS  Google Scholar 

  15. Liang, C. D., Dudney, N. J. & Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009).

    CAS  Google Scholar 

  16. Song, J. X. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014).

    CAS  Google Scholar 

  17. Li, M. et al. Gas Pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26, 8408–8417 (2016).

    CAS  Google Scholar 

  18. Li, M. et al. Compact high volumetric and areal capacity lithium sulfur battery through rock salt induced nano-architectured sulfur host. J. Mater. Chem. A 5, 21435–21441 (2017).

    CAS  Google Scholar 

  19. Li, G. et al. Stringed ‘tube on cube’ nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. ‎Energy Environ. Sci. 11, 2372–2381 (2018).

    CAS  Google Scholar 

  20. Wei Seh, Z. et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Google Scholar 

  21. Lu, J. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat. Commun. 5, ncomms5895 (2014).

    Google Scholar 

  22. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377 (2016).

    CAS  Google Scholar 

  23. Li, Z., Fang, Y., Zhang, J. & Lou, X. W. Necklace-like structures composed of Fe3N@C yolk–shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. https://doi.org/10.1002/adma.201800525 (2018).

  24. Son, S.-B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    CAS  Google Scholar 

  25. Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. https://doi.org/adma.1800561 (2018).

  26. Xiao, J. Understanding the lithium sulfur battery system at relevant scales. Adv. Energy Mater. 5, 1501102 (2015).

    Google Scholar 

  27. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. ‎Nat. Energy 1, 16071 (2016).

    CAS  Google Scholar 

  28. Raccichini, R., Varzi, A., Wei, D. & Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).

    Google Scholar 

  29. Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    CAS  Google Scholar 

  30. Urbonaite, S., Poux, T. & Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 5, 1500118 (2015).

    Google Scholar 

  31. Freunberger, S. A. True performance metrics in beyond-intercalation batteries. ‎Nat. Energy 2, 17091 (2017).

    Google Scholar 

  32. Hu, Y. S. et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater. 17, 1873–1878 (2007).

    CAS  Google Scholar 

  33. Landi, B. J., Ganter, M. J., Cress, C. D., DiLeo, R. A. & Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. ‎Energy Environ. Sci. 2, 638–654 (2009).

    CAS  Google Scholar 

  34. Yoo, E. et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008).

    CAS  Google Scholar 

  35. Sun, Y. Q., Wu, Q. O. & Shi, G. Q. Graphene based new energy materials. ‎Energy Environ. Sci. 4, 1113–1132 (2011).

    CAS  Google Scholar 

  36. Lian, P. C. et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55, 3909–3914 (2010).

    CAS  Google Scholar 

  37. Zhang, W. M., Wu, X. L., Hu, J. S., Guo, Y. G. & Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941–3946 (2008).

    CAS  Google Scholar 

  38. Jiang, J. et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012).

    CAS  Google Scholar 

  39. Reddy, M. V., Rao, G. V. S. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    CAS  Google Scholar 

  40. Buiel, E. & Dahn, J. R. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 45, 121–130 (1999).

    CAS  Google Scholar 

  41. Dahn, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

    CAS  Google Scholar 

  42. Gallagher, K. G. et al. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96–98 (2013).

    CAS  Google Scholar 

  43. Bettge, M. et al. Voltage fade of layered oxides: its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046–A2055 (2013).

    CAS  Google Scholar 

  44. Wang, Z. Y., Luan, D. Y., Madhavi, S., Li, C. M. & Lou, X. W. α-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun. 47, 8061–8063 (2011).

    CAS  Google Scholar 

  45. Chen, J. et al. Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

    CAS  Google Scholar 

  46. Peng, H. J., Huang, J. Q., Cheng, X. B. & Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).

    Google Scholar 

  47. Wang, H. et al. Tailored reaction route by micropore confinement for Li–S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 8, 1800590 (2018).

    Google Scholar 

  48. Cheng, L. et al. Sparingly solvating electrolytes for high energy density lithium–sulfur batteries. ACS Energy Lett. 1, 503–509 (2016).

    CAS  Google Scholar 

  49. Hagen, M. et al. Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).

    Google Scholar 

  50. Chung, S. H., Chang, C. H. & Manthiram, A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater. 28 (2018).

  51. Li, M. et al. A lithium–sulfur battery using a 2D current collector architecture with a large-sized sulfur host operated under high areal loading and low E/S ratio. Adv. Mater. 30, 1804271 (2018).

    Google Scholar 

  52. Fan, F. Y. & Chiang, Y.-M. Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164, A917–A922 (2017).

    CAS  Google Scholar 

  53. Li, G. et al. 3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium–sulfur batteries. Adv. Energy Mater. 8, 1702381 (2018).

    Google Scholar 

  54. Washburn, E. W. The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921).

    Google Scholar 

  55. Sheng, Y. et al. Effect of calendering on electrode wettability in lithium-ion batteries. Front. Energy Res. 2, 56 (2014).

    Google Scholar 

  56. Chung, S. H. & Manthiram, A. Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30 (2018).

  57. Chung, S.-H. & Manthiram, A. Designing lithium–sulfur cells with practically necessary parameters. Joule 2, 710–724 (2018).

    CAS  Google Scholar 

  58. Fang, R. et al. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017).

    Google Scholar 

  59. Liu, T. J., Tiu, C., Chen, L. C. & Liu, D. in Printed Batteries: Materials, Technologies and Applications (eds. Lanceros-Menez, S. & Costa, C. M.) 63–79 (Wiley, Hoboken, 2018).

  60. Yang, X., Li, X., Adair, K., Zhang, H. & Sun, X. Structural design of lithium–sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018).

    Google Scholar 

  61. Nam, Y. J., Oh, D. Y., Jung, S. H. & Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    CAS  Google Scholar 

  62. Wang, Z. et al. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018).

    Google Scholar 

  63. Judez, X. et al. Solid electrolytes for safe and high energy density lithium–sulfur batteries: promises and challenges. J. Electrochem. Soc. 165, A6008–A6016 (2018).

    CAS  Google Scholar 

  64. Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. ‎Nat. Energy 1, 15008 (2016).

    CAS  Google Scholar 

  65. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Google Scholar 

  66. Zhang, Z. et al. Li2O-reinforced Cu nanoclusters as porous structure for dendrite-free and long-lifespan lithium metal anode. ACS Appl. Mater. Interfaces 8, 26801–26808 (2016).

    CAS  Google Scholar 

  67. Aurbach, D. & Granot, E. The study of electrolyte solutions based on solvents from the ‘glyme’ family (linear polyethers) for secondary Li battery systems. Electrochim. Acta 42, 697–718 (1997).

    CAS  Google Scholar 

  68. Aurbach, D., Gofer, Y., Ben-Zion, M. & Aped, P. The behaviour of lithium electrodes in propylene and ethylene carbonate: te major factors that influence Li cycling efficiency. J. Electroanal. Chem. 339, 451–471 (1992).

    CAS  Google Scholar 

  69. Lu, J., Wu, T. & Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. ‎Nat. Energy 2, 17011 (2017).

    CAS  Google Scholar 

  70. Shishkin, Y. L. The effect of sample mass and heating rate on DSC results when studying the fractional composition and oxidative stability of lube base oils. Thermochim. Acta 444, 26–34 (2006).

    CAS  Google Scholar 

  71. Martín, J. L., Salla, J. M., Cadenato, A. & Ramis, X. Effects of experimental sample mass on the calorimetric study of thermoset resins. J. Thermal Anal. 38, 917–927 (1992).

    Google Scholar 

  72. Wang, Q. S. et al. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012).

    CAS  Google Scholar 

  73. Khateeb, S. A., Farid, M. M., Selman, J. R. & Al-Hallaj, S. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J. Power Sources 128, 292–307 (2004).

    CAS  Google Scholar 

  74. Yuan, Y., Amine, K., Lu, J. & Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    CAS  Google Scholar 

  75. Lowe, M. A., Gao, J. & Abruña, H. D. Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Adv. 4, 18347–18353 (2014).

    CAS  Google Scholar 

  76. Ren, Y. & Zuo, X. Synchrotron X-ray and neutron diffraction, total scattering, and small-angle scattering techniques for rechargeable battery research. Small Methods 2, 1800064 (2018).

    Google Scholar 

  77. Wang, X.-L. et al. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction. Sci. Rep. 2, 747 (2012).

    Google Scholar 

  78. Yu, X. et al. Simultaneous operando measurements of the local temperature, state of charge, and strain inside a commercial lithium-ion battery pouch cell. J. Electrochem. Soc. 165, A1578–A1585 (2018).

    CAS  Google Scholar 

  79. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. ‎Nat. Energy 3, 267–278 (2018).

    CAS  Google Scholar 

  80. Eroglu, D., Zavadil, K. R. & Gallagher, K. G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium–sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).

    CAS  Google Scholar 

  81. McGrogan, F. P. et al. Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

    Google Scholar 

  82. Kim, J. H., Kim, J. S., Lim, Y. G., Lee, J. G. & Kim, Y. J. Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J. Power Sources 196, 10490–10495 (2011).

    CAS  Google Scholar 

  83. Fan, Z. J. et al. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60, 558–561 (2013).

    CAS  Google Scholar 

  84. Zheng, J. et al. Structural and chemical evolution of Li-and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015).

    CAS  Google Scholar 

  85. Lv, D. et al. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. PNNL is operated by Battelle for DOE under contract no. DE-AC05-76RL01830. Argonne National Laboratory is operated for DOE by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. Y.C. acknowledges financial support from the National Key Research Program of China (no. 2016YFB0100200). M.L. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Waterloo Institute for Nanotechnology (WIN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lu, Jun Liu or Khalil Amine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, M., Lu, J. et al. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019). https://doi.org/10.1038/s41565-019-0371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0371-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing