Optically switchable organic light-emitting transistors


Organic light-emitting transistors are pivotal components for emerging opto- and nanoelectronics applications, such as logic circuitries and smart displays. Within this technology sector, the integration of multiple functionalities in a single electronic device remains the key challenge. Here we show optically switchable organic light-emitting transistors fabricated through a judicious combination of light-emitting semiconductors and photochromic molecules. Irradiation of the solution-processed films at selected wavelengths enables the efficient and reversible tuning of charge transport and electroluminescence simultaneously, with a high degree of modulation (on/off ratios up to 500) in the three primary colours. Different emitting patterns can be written and erased through a non-invasive and mask-free process, on a length scale of a few micrometres in a single device, thereby rendering this technology potentially promising for optically gated highly integrated full-colour displays and active optical memory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Molecules, energetics and device structure of OSOLETs.
Fig. 2: Electroluminescence spectra, optical micrographs and optoelectronic characteristics.
Fig. 3: Reversible modulation of OSOLET current and luminance during irradiation cycles.
Fig. 4: Emitting pattern created and erased within a single OSOLET.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Cicoira, F. & Santato, C. Organic light emitting field effect transistors: advances and perspectives. Adv. Funct. Mater. 17, 3421–3434 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nat. Photon. 5, 392–393 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252–1294 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5, 69–74 (2005).

    Article  Google Scholar 

  7. 7.

    Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171–1175 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005).

    Article  Google Scholar 

  9. 9.

    Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Capelli, R. et al. Interface functionalities in multilayer stack organic light emitting transistors (OLETs). Adv. Funct. Mater. 24, 5603–5613 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    McCarthy, M. A. et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332, 570–573 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Zaumseil, J., Donley, C. L., Kim, J. S., Friend, R. H. & Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18, 2708–2712 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Gwinner, M. C. et al. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 24, 2728–2734 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Ullah, M. et al. Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. Adv. Mater. 25, 6213–6218 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Park, S. K. et al. Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29, 1701346 (2017).

    Article  Google Scholar 

  17. 17.

    Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photon. 7, 634–638 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Kim, Y. L. et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nat. Photon. 8, 239–243 (2014).

    Article  Google Scholar 

  19. 19.

    Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Wang, X. et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun. 6, 7767 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, X. Y., Hou, L. L. & Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 7, 11128 (2016).

    Article  Google Scholar 

  22. 22.

    Orgiu, E. et al. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nat. Chem. 4, 675–679 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Gemayel, M. E. et al. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nat. Commun. 6, 6330 (2015).

    Article  Google Scholar 

  24. 24.

    Borjesson, K. et al. Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer. J. Mater. Chem. C 3, 4156–4161 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Irie, M. & Mohri, M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J. Org. Chem. 53, 803–808 (1988).

    CAS  Article  Google Scholar 

  26. 26.

    Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Hou, L., Zhang, X., Pijper, T. C., Browne, W. R. & Feringa, B. L. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem. Soc. 136, 910–913 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Herder, M. et al. Improving the fatigue resistance of diarylethene switches. J. Am. Chem. Soc. 137, 2738–2747 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Herder, M. et al. Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes. Chem. Eur. J. 23, 3743–3754 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Salleo, A., Chabinyc, M. L., Yang, M. S. & Street, R. A. Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 4383–4385 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    Ito, Y. et al. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Lee, T.-W. & Park, O. O. The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes. Adv. Mater. 12, 801–804 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    Grell, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 9, 798–802 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Perevedentsev, A., Chander, N., Kim, J. S. & Bradley, D. D. C. Spectroscopic properties of poly(9,9‐dioctylfluorene) thin films possessing varied fractions of β-phase chain segments: enhanced photoluminescence efficiency via conformation structuring. J. Polym. Sci. Polym. Phys. 54, 1995–2006 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Caruso, M. E., Lattante, S., Cingolani, R. & Anni, M. Microscopic investigation of the poly(9,9-dioctylfluorene) photoluminescence dependence on the deposition conditions by confocal laser microscopy. Appl. Phys. Lett. 88, 181906 (2006).

    Article  Google Scholar 

  37. 37.

    Lim, S. F. et al. Suppression of green emission in a new class of blue-emitting PF copolymers with twisted biphenyl moieties. Adv. Funct. Mater. 15, 981–988 (2005).

    CAS  Article  Google Scholar 

  38. 38.

    List, E. J. W., Guentner, R., Scanducci de Freitas, P. & Scherf, U. The effect of keto defect sites on the emission properties of polyfluorene-type materials. Adv. Mater. 14, 374–378 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    Honmou, Y. et al. Single-molecule electroluminescence and photoluminescence of polyfluorene unveils the photophysics behind the green emission band. Nat. Commun. 5, 4666 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Gong, X. et al. Stabilized blue emission from polyfluorene-based light-emitting diodes: elimination of fluorenone defects. Adv. Funct. Mater. 13, 325–330 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Hepp, A. et al. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).

    Article  Google Scholar 

  42. 42.

    Santato, C. et al. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synth. Met. 146, 329–334 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    Roelofs, W. S. C., Adriaans, W. H., Janssen, R. A. J., Kemerink, M. & de Leeuw, D. M. Light emission in the unipolar regime of ambipolar organic field-effect transistors. Adv. Funct. Mater. 23, 4133–4139 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Redecker, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl. Phys. Lett. 74, 1400–1402 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    Hsu, B. B. Y. et al. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors. ACS Nano 7, 2344–2351 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Lu, H. H., Liu, C. Y., Chang, C. H. & Chen, S. A. Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue electroluminescence. Adv. Mater. 19, 2574–2579 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Zacharias, P., Gather, M. C., Köhnen, A., Rehmann, N. & Meerholz, K. Photoprogrammable organic light-emitting diodes. Angew. Chem. Int. Ed. 48, 4038–4041 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge funding from the European Commission through the Marie Sklodowska-Curie ITN project iSwitch (GA-642196), the Marie Sklodowska-Curie ITN project SYNCHRONICS (GA-643238), ERC projects SUPRAFUNCTION (GA-257305) and LIGHT4FUNCTION (GA-308117), the Agence Nationale de la Recherche through the Labex project CSC (ANR-10-LABX-0026 CSC) within the Investissement d’Avenir programme (ANR-10-120 IDEX-0002-02), the International Center for Frontier Research in Chemistry (icFRC) as well as the German Research Foundation (via SFB 765 and SFB 951). F.C. is a Royal Society Wolfson Research Merit Award holder.

Author information




L.H., X.Z. and P.S. conceived the experiments. M.H., B.M.S., M.P. and S.H. synthesized the DAEs. L.H. carried out UV–vis absorption and photoluminescence measurements. X.Z. performed atomic force microscopy (the F8/DAE_tBu sample by G.C.) and CV measurements. L.H. and X.Z. designed the devices, performed the electrical experiments and carried out emitting pattern writing. G.F.C., G.C. and F.C. designed and built the device characterization set-up. G.F.C., G.C. and L.H. performed the quantitative OLET device characterization. All authors discussed the results and contributed to interpretation of data. L.H., X.Z. and P.S. co-wrote the paper, with input from all co-authors.

Corresponding authors

Correspondence to Stefan Hecht or Franco Cacialli or Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Journal peer review information Nature Nanotechnology thanks Rafaella Capelli and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, X., Cotella, G.F. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019). https://doi.org/10.1038/s41565-019-0370-9

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research