Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation

Abstract

The hydrogenation activity of noble metal, especially platinum (Pt), catalysts can be easily inhibited by the presence of a trace amount of carbon monoxide (CO) in the reaction feeds. Developing CO-resistant hydrogenation catalysts with both high activity and selectivity is of great economic interest for industry as it allows the use of cheap crude hydrogen and avoids costly product separation. Here we show that atomically dispersed Pt over α-molybdenum carbide (α-MoC) constitutes a highly CO-resistant catalyst for the chemoselective hydrogenation of nitrobenzene derivatives. The Pt1/α-MoC catalyst shows promising activity in the presence of 5,000 ppm CO, and has a strong chemospecificity towards the hydrogenation of nitro groups. With the assistance of water, high hydrogenation activity can also be achieved using CO and water as a hydrogen source, without sacrificing selectivity and stability. The weakened CO binding over the electron-deficient Pt single atom and a new reaction pathway for nitro group hydrogenation confer high CO resistivity and chemoselectivity on the catalyst.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Structural characterization of the 0.25% Pt/α-MoC catalyst.
Fig. 2: The energy profiles for C6H5NO2 hydrogenation into C6H5NH2 on Pt1/α-MoC(111).
Fig. 3: The intrinsic hydrogenation TOF rate per Pt site for nitrobenzene over the 0.5% Pt/C and 0.25% Pt/α-MoC catalysts.

Data Availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author, X.D.W., upon reasonable request.

References

  1. Downing, R., Kunkeler, P. & Van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 37, 121–136 (1997).

    CAS  Article  Google Scholar 

  2. Grirrane, A., Corma, A. & García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322, 1661–1664 (2008).

    CAS  Article  Google Scholar 

  3. Saavedra, J. et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nat. Chem. 8, 584 (2016).

    CAS  Article  Google Scholar 

  4. Vannice, M. A. & Poondi, D. Benzaldehyde hydrogenation over titania-covered Pt powder. J. Catal. 178, 386–390 (1998).

    CAS  Article  Google Scholar 

  5. Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    CAS  Article  Google Scholar 

  6. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333 (2008).

    CAS  Article  Google Scholar 

  7. Montano, M., Salmeron, M. & Somorjai, G. A. STM studies of cyclohexene hydrogenation/dehydrogenation and its poisoning by carbon monoxide on Pt (111). Surf. Sci. 600, 1809–1816 (2006).

    CAS  Article  Google Scholar 

  8. Tang, D. C., Hwang, K. S., Salmeron, M. & Somorjai, G. A. High pressure scanning tunneling microscopy study of CO poisoning of ethylene hydrogenation on Pt (111) and Rh (111) single crystals. J. Phys. Chem. B 108, 13300–13306 (2004).

    CAS  Article  Google Scholar 

  9. Ni, M., Leung, D. Y., Leung, M. K. & Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461–472 (2006).

    CAS  Article  Google Scholar 

  10. Rajesh, J., Gupta, S., Rangaiah, G. & Ray, A. Multi-objective optimization of industrial hydrogen plants. Chem. Eng. Sci. 56, 999–1010 (2001).

    CAS  Article  Google Scholar 

  11. Edlund, D. J. Steam reformer with internal hydrogen purification. US patent 5861137A (1999).

  12. Sircar, S. & Golden, T. Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000).

    CAS  Article  Google Scholar 

  13. Iulianelli, A., Ribeirinha, P., Mendes, A. & Basile, A. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew. Sust. Energ. Rev. 29, 355–368 (2014).

    CAS  Article  Google Scholar 

  14. Lin, H., Van Wagner, E., Freeman, B. D., Toy, L. G. & Gupta, R. P. Plasticization-enhanced hydrogen purification using polymeric membranes. Science 311, 639–642 (2006).

    CAS  Article  Google Scholar 

  15. Buchannan, T. L., Klett, M. G. & Schoff, R. L. Capital and Operating Cost of Hydrogen Production from Coal Gasification: The Final Report (National Energy Technology Laboratory, US Department of Energy, 2003).

  16. Annual Energy Outlook 2013: With Projections to 2040. DOE/EIA-0383 (US Energy Information Administration, 2013).

  17. Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    CAS  Article  Google Scholar 

  18. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Article  Google Scholar 

  19. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2016).

    Article  Google Scholar 

  20. Moses-DeBusk, M. et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3 (010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013).

    CAS  Article  Google Scholar 

  21. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80 (2017).

    CAS  Article  Google Scholar 

  22. He, L. et al. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. 48, 9538–9541 (2009).

    CAS  Article  Google Scholar 

  23. Bratlie, K. M., Lee, H., Komvopoulos, K., Yang, P. & Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano. Lett. 7, 3097–3101 (2007).

    CAS  Article  Google Scholar 

  24. Serna, P. & Corma, A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal. 5, 7114–7121 (2015).

    CAS  Article  Google Scholar 

  25. Serna, P., Concepción, P. & Corma, A. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 265, 19–25 (2009).

    CAS  Article  Google Scholar 

  26. Liang, M. H., Wang, X. D., Liu, H. Q., Liu, H. C. & Wang, Y. Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes. J. Catal. 255, 335–342 (2008).

    CAS  Article  Google Scholar 

  27. Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    CAS  Article  Google Scholar 

  28. Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332–334 (2006).

    CAS  Article  Google Scholar 

  29. Boronat, M. et al. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J. Am. Chem. Soc. 129, 16230–16237 (2007).

    CAS  Article  Google Scholar 

  30. Boymans, E. H., Witte, P. & Vogt, D. A study on the selective hydrogenation of nitroaromatics to N-arylhydroxylamines using a supported Pt nanoparticle catalyst. Catal. Sci. Technol. 5, 176–183 (2015).

    CAS  Article  Google Scholar 

  31. Hoffman, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (Cornell Univ. Baker Laboratory, Ithaca, 1988).

  32. Hughbanks, T. & Hoffmann, R. Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems. J. Am. Chem. Soc. 105, 3528–3537 (1983).

    CAS  Article  Google Scholar 

  33. Foppa, L., Copéret, C. & Comas-Vives, A. Increased back-bonding explains step-edge reactivity and particle size effect for CO activation on Ru nanoparticles. J. Am. Chem. Soc. 138, 16655–16668 (2016).

    CAS  Article  Google Scholar 

  34. Föhlisch, A. et al. How carbon monoxide adsorbs in different sites. Phys. Rev. Lett. 85, 3309 (2000).

    Article  Google Scholar 

  35. Dimakis, N., Navarro, N. E., Mion, T. & Smotkin, E. S. Carbon monoxide adsorption coverage study on platinum and ruthenium surfaces. J. Phys. Chem. C 118, 11711–11722 (2014).

    CAS  Article  Google Scholar 

  36. Rodriguez, J. A., Ramírez, P. J. & Gutierrez, R. A. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance. Catal. Today 289, 47–52 (2017).

    CAS  Article  Google Scholar 

  37. He, L. et al. A novel gold-catalyzed chemoselective reduction of α, β-unsaturated aldehydes using CO and H2O as the hydrogen source. Chem. Commun. 46, 1553–1555 (2010).

    CAS  Article  Google Scholar 

  38. Ravel, á & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  39. Krivanek, O. L. et al. in Low Voltage Electron Microscopy: Principles and Applications (eds Bell, D. & Erdman, N.) Ch. 6 (Wiley, London, 2013).

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  43. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  45. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21725301, 91645115, 21872104, 21473003, 51622211, 21473229 and 91545121) and the National Key R&D Program of China (2017YFB0602200). The electron microscopy work performed in the CAS Key Laboratory of Vacuum Sciences was supported in part by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS) and the Pioneer Hundred Talents Program of the CAS. The XAFS experiments were conducted at the Shanghai Synchrotron Radiation Facility. The authors also acknowledge the innovation foundation of the Institute of Coal Chemistry, CAS, the Hundred-Talent Program of the CAS, the Shanxi Hundred-Talent Program and the National Thousand Young Talents Program of China. The scholarship under the International Postdoctoral Exchange Fellowship Program 2017 by the Office of China Postdoctoral Council (document 496 number: no. 32 Document of OCPC, 2017) is also gratefully acknowledged. The authors also appreciate B. Qiao for discussions and for providing the Pt1/FeOx single atom catalyst as a reference.

Author information

Authors and Affiliations

Authors

Contributions

D.M. designed the research. L.L. performed most of the reactions. W.Z. performed the electron microscopy analyses. S.Y. and Z.J. carried out the X-ray structure characterization and analyses. R.G., Y.-W.L. and X.-D.W. completed the theoretical calculations. L.L., S.Y., W.Z. and D.M. wrote the paper. Other authors performed some of the experiments and revised the paper. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Wu Zhou or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Nigel Powell, Yung-Eun Sung and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussions, Figures 1–10, Tables 1–5 and References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Yao, S., Gao, R. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019). https://doi.org/10.1038/s41565-019-0366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0366-5

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research