Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy


One of the fundamental hurdles in plasmonics is the trade-off between electromagnetic field confinement and the coupling efficiency with free-space light, a consequence of the large momentum mismatch between the excitation source and plasmonic modes. Acoustic plasmons in graphene, in particular, have an extreme level of field confinement, as well as an extreme momentum mismatch. Here, we show that this fundamental compromise can be overcome and demonstrate a graphene acoustic plasmon resonator with nearly perfect absorption (94%) of incident mid-infrared light. This high efficiency is achieved by utilizing a two-stage coupling scheme: free-space light coupled to conventional graphene plasmons, which then couple to ultraconfined acoustic plasmons. To realize this scheme, we transfer unpatterned large-area graphene onto template-stripped ultraflat metal ribbons. A monolithically integrated optical spacer and a reflector further boost the enhancement. We show that graphene acoustic plasmons allow ultrasensitive measurements of absorption bands and surface phonon modes in ångström-thick protein and SiO2 layers, respectively. Our acoustic plasmon resonator platform is scalable and can harness the ultimate level of light–matter interactions for potential applications including spectroscopy, sensing, metasurfaces and optoelectronics.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Coupling mechanisms.
Fig. 2: Plasmonic absorption enhancement by an integrated reflector.
Fig. 3: Fabrication process and resonator structure.
Fig. 4: Gap dependence of dispersion and absorption.
Fig. 5: Acoustic-plasmon-mediated light–matter interactions.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Hwang, E. & Sarma, S. D. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  2. 2.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  Google Scholar 

  3. 3.

    Koppens, F. H., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  6. 6.

    Liu, M. et al. Graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012).

    Article  Google Scholar 

  8. 8.

    Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Fang, Z. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  Google Scholar 

  11. 11.

    Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Liu, C.-H., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Fallahi, A. & Perruisseau-Carrier, J. Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B 86, 195408 (2012).

    Article  Google Scholar 

  15. 15.

    Biswas, S. R. et al. Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing. Phys. Rev. Appl. 9, 034021 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    Article  Google Scholar 

  17. 17.

    Sherrott, M. C. et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Bao, Q. et al. Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Tymchenko, M., Nikitin, A. Y. & Martín-Moreno, L. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ACS Nano 7, 9780–9787 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Li, Y. et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett. 14, 1573–1577 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  Google Scholar 

  27. 27.

    Hwang, E. & Sarma, S. D. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B 80, 205405 (2009).

    Article  Google Scholar 

  28. 28.

    Principi, A., Asgari, R. & Polini, M. Acoustic plasmons and composite hole–acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun. 151, 1627–1630 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Francescato, Y., Giannini, V. & Maier, S. A. Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15, 063020 (2013).

    Article  Google Scholar 

  30. 30.

    Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  Google Scholar 

  31. 31.

    Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Chen, S. et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photon. 4, 3089–3097 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  Google Scholar 

  34. 34.

    Nikitin, A. Y., Low, T. & Martín-Moreno, L. Anomalous reflection phase of graphene plasmons and its influence on resonators. Phys. Rev. B 90, 041407 (2014).

    Article  Google Scholar 

  35. 35.

    Jang, M. S. et al. Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90, 165409 (2014).

    Article  Google Scholar 

  36. 36.

    Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Lindquist, N. C., Johnson, T. W., Norris, D. J. & Oh, S.-H. Monolithic integration of continuously tunable plasmonic nanostructures. Nano Lett. 11, 3526–3530 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Lee, I.-H. et al. Anisotropic acoustic plasmons in black phosphorus. ACS Photon. 5, 2208–2016 (2017).

    Article  Google Scholar 

  40. 40.

    Yoo, D. et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett. 18, 1930–1936 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    Olson, C. & Lynch, D. W. Longitudinal-optical-phonon–plasmon coupling in GaAs. Phys. Rev. 177, 1231 (1969).

    CAS  Article  Google Scholar 

  43. 43.

    Perlin, P. et al. Investigation of longitudinal-optical phonon–plasmon coupled modes in highly conducting bulk GaN. Appl. Phys. Lett. 67, 2524–2526 (1995).

    CAS  Article  Google Scholar 

  44. 44.

    Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Wright, A., Xu, X., Cao, J. & Zhang, C. Strong nonlinear optical response of graphene in the terahertz regime. Appl. Phys. Lett. 95, 072101 (2009).

    Article  Google Scholar 

  48. 48.

    Lim, G.-K. et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photon. 5, 554–560 (2011).

    Article  Google Scholar 

  49. 49.

    Gullans, M., Chang, D., Koppens, F., de Abajo, F. G. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Freitag, M., Chiu, H.-Y., Steiner, M., Perebeinos, V. & Avouris, P. Thermal infrared emission from biased graphene. Nat. Nanotechnol. 5, 497–501 (2010).

    Article  Google Scholar 

  52. 52.

    Low, T. & Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014).

    CAS  Article  Google Scholar 

  53. 53.

    Liang, X. et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011).

    Article  Google Scholar 

  54. 54.

    Gunes, F. et al. Layer-by-layer doping of few-layer graphene film. ACS Nano 4, 4595–4600 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    D’Arsié, L. et al. Stable, efficient p-type doping of graphene by nitric acid. RSC Adv. 6, 113185–113192 (2016).

    Article  Google Scholar 

  56. 56.

    Nikitin, A. Y., Guinea, F., Garcia-Vidal, F. & Martin-Moreno, L. Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B 84, 195446 (2011).

    Article  Google Scholar 

  57. 57.

    Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. & Querry, M. R. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl. Opt. 26, 744–752 (1987).

    CAS  Article  Google Scholar 

  58. 58.

    Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012).

    CAS  Article  Google Scholar 

  59. 59.

    Liberman, V. et al. Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Opt. Express 20, 11953–11967 (2012).

    CAS  Article  Google Scholar 

Download references


This research was supported primarily by the National Science Foundation (NSF) through an MRSEC grant (to I.-H.L., T.L. and S.-H.O.), ECCS 1809723 (to I.-H.L., S.-H.O. and T.L.) and ECCS 1610333 (to D.Y. and S.-H.O.). T.L. and S.-H.O. also acknowledge support from the Institute for Mathematics and its Applications (IMA) at the University of Minnesota. S.-H.O. further acknowledges support from the Sanford P. Bordeau Endowed Chair at the University of Minnesota. The authors thank S. Kim and M. Jo for sharing silk fibroin samples. Device fabrication was performed at the Minnesota Nanofabrication Center at the University of Minnesota, which receives partial support from the NSF through the National Nanotechnology Coordinated Infrastructure (NNCI). Electron microscopy measurements were performed at the Characterization Facility, which has received capital equipment from NSF MRSEC.

Author information




I.-H.L. and S.-H.O. conceived the idea. I.-H.L. performed simulations, device fabrication and characterization. D.Y. performed SEM and AFM characterization. I.-H.L., P.A., T.L. and S.-H.O. performed theoretical analysis. All authors analysed the data and wrote the paper together.

Corresponding author

Correspondence to Sang-Hyun Oh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–21

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, IH., Yoo, D., Avouris, P. et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research