Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities

A Publisher Correction to this article was published on 18 February 2019

This article has been updated

Abstract

Modern devices require the tuning of the size, shape and spatial arrangement of nano-objects and their assemblies with nanometre-scale precision, over large-area and sometimes soft substrates. Such stringent requirements are beyond the reach of conventional lithographic techniques or self-assembly approaches. Here, we show nanoscale control over the fluid instabilities of optical thin glass films for the fabrication of self-assembled all-dielectric optical metasurfaces. We show and model the tailoring of the position, shape and size of nano-objects with feature sizes below 100 nm and with interparticle distances down to 10 nm. This approach can generate optical nanostructures over rigid and soft substrates that are more than tens of centimetres in size, with optical performance and resolution on a par with advanced traditional lithography-based processes. To underline the potential of our approach, which reconciles high-performance optical metasurfaces and simple self-assembly fabrication approaches, we demonstrate experimentally and via numerical simulation sharp Fano resonances with a quality factor, Q, as high as 300 in the visible for all-dielectric nanostructures, to realize protein monolayer detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication process for optical metasurfaces.
Fig. 2: Study of the dewetting process.
Fig. 3: Process versatility.
Fig. 4: Process versatility.
Fig. 5: Optical properties of chalcogenide metasurfaces.
Fig. 6: Biosensing application.

Similar content being viewed by others

Change history

  • 18 February 2019

    In the version of this Article originally published, the volume, article number and year of ref. 32 were incorrect; they should have read 31, 1802348 (2019). This has now been corrected.

References

  1. Nanfang, Y. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  Google Scholar 

  2. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  CAS  Google Scholar 

  3. Elhanan, M. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    Article  Google Scholar 

  4. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  5. Saman, J. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    Article  Google Scholar 

  6. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  CAS  Google Scholar 

  7. Lan, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

    Article  Google Scholar 

  8. Mohammadreza, K. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  Google Scholar 

  9. Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photon. 8, 919–926 (2014).

    Article  CAS  Google Scholar 

  10. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, 2472 (2016).

    Article  Google Scholar 

  11. Wang, K. X., Yu, Z., Liu, V., Cui, Y. & Fan, S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012).

    Article  CAS  Google Scholar 

  12. Yanik, A. A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    Article  CAS  Google Scholar 

  13. Bontempi, N. et al. Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 15, 4972–4980 (2017).

    Article  Google Scholar 

  14. Yang, Y., Kravchenko, I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    Article  CAS  Google Scholar 

  15. Albella, P., Rodrigo, A., Fernando, M. & Maier, A. S. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon. 1, 524–529 (2014).

    Article  CAS  Google Scholar 

  16. Yuanmu, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    Article  Google Scholar 

  17. Liu, S. et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

    Article  CAS  Google Scholar 

  18. Lei, W. et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 18, 3978–3984 (2018).

    Article  Google Scholar 

  19. Matthew, P. et al. Active tuning of high-Q dielectric metasurfaces. Appl. Phys. Lett. 111, 053102 (2017).

    Article  Google Scholar 

  20. Li, L. et al. Monolithically integrated stretchable photonics. Light Sci. Appl. 7, 17138 (2018).

    Article  CAS  Google Scholar 

  21. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, 9957 (2018).

    Article  Google Scholar 

  22. Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

    Article  Google Scholar 

  23. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  24. Vigderman, L., Khanal, B. P. & Zubarev, E. R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012).

    Article  CAS  Google Scholar 

  25. Flauraud, V. et al. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017).

    Article  CAS  Google Scholar 

  26. Lin, Q.-Y. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 359, 669–672 (2018).

    Article  CAS  Google Scholar 

  27. Thompson, C. V. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012).

    Article  CAS  Google Scholar 

  28. Jongpil, Y. & Thompson, C. V. Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23, 1567–1571 (2011).

    Article  Google Scholar 

  29. Le Bris, A., Maloum, F., Teisseire, J. & Sorin, F. Self-organized ordered silver nanoparticle arrays obtained by solid state dewetting. Appl. Phys. Lett. 105, 203102 (2014).

    Article  Google Scholar 

  30. Sharma, A. & Khanna, R. Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463 (1998).

    Article  CAS  Google Scholar 

  31. Deng, D. S., Nave, J.-C., Liang, X., Johnson, S. G. & Fink, Y. Exploration of in-fiber nanostructures from capillary instability. Opt. Exp. 19, 16273–16290 (2011).

    Article  CAS  Google Scholar 

  32. Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, 1802348 (2019).

    Article  Google Scholar 

  33. Zha, Y. & Arnold, C. B. Solution-processing of thick chalcogenide–chalcogenide and metal–chalcogenide structures by spin-coating and multilayer lamination. Opt. Mater. Exp. 3, 309–317 (2013).

    Article  CAS  Google Scholar 

  34. Kohoutek, T., Orava, J., Lindsay Greer, A. & Fudouzi, H. Sub-micrometer soft lithography of a bulk chalcogenide glass. Opt. Exp. 21, 9584–9591 (2013).

    Article  CAS  Google Scholar 

  35. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    Article  CAS  Google Scholar 

  36. Peiman, H., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  Google Scholar 

  37. Yan, W. et al. Semiconducting nanowire-based optoelectronic fibers. Adv. Mater. 29, 1700681 (2017).

    Article  Google Scholar 

  38. Li, Z. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).

    Article  Google Scholar 

  39. Zou, Y. et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration. Adv. Opt. Mater. 2, 759–764 (2014).

    Article  CAS  Google Scholar 

  40. de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).

  41. Tverjanovich, A. S. Temperature dependence of the viscosity of chalcogenide glass-forming melts. Glass Phys. Chem. 29, 532–536 (2003).

    Article  CAS  Google Scholar 

  42. Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    Article  CAS  Google Scholar 

  43. Style, R. W., Hyland, C., Boltyanskiy, R., Wettlaufer, J. S. & Dufresne, E. R. Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2728 (2013).

    Article  Google Scholar 

  44. Liu, J.-G. & Mitsuru, U. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19, 8907–8919 (2009).

    Article  CAS  Google Scholar 

  45. Gupta, T. D., Maurin, I., Rowe, A. C. H. & Gacoin, T. Ultrafine tuning of the metal volume fraction in silver/silicate nanocomposites near the percolation threshold. Nanoscale. 9, 3504–3511 (2017).

    Article  Google Scholar 

  46. Brudieu, B. et al. Sol–gel route toward efficient and robust distributed Bragg reflectors for light management applications. Adv. Opt. Mater. 2, 1105–1112 (2014).

    Article  CAS  Google Scholar 

  47. Babicheva, V. E. & Evlyukhin, A. B. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photon. Rev. 11, 1700132 (2017).

    Article  Google Scholar 

  48. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article  CAS  Google Scholar 

  49. Yesilkoy, F. et al. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 7, 17152 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Smektala and F. Dévésédavy for providing the chalcogenide compositions used in this work. The authors also acknowledge the European Research Council for funding support (ERC starting grant 679211 ‘FLOWTONICS’).

Author information

Authors and Affiliations

Authors

Contributions

F.S. proposed the research direction, supervised the project, and participated in the materials selection and modelling of the dewetting process as well as the optical properties of the nanostructures. T.D.G. participated in fabrication, optical experiments, and their corresponding simulations and modelling. L.M.-M. participated in the modelling of the dewetting process. A.L.B. initiated the project and conducted initial experiments on sample fabrication and optical property measurements. T.D.G., L.M.-M., W.Y., T.N.-D. and A.G.P. participated in SEM characterization. W.Y. carried out the corresponding TEM characterization. A.G.P. characterized experimentally the variation of characteristic dewetting time constant with normalized viscosity. T.D.G., F.Y. and H.A. participated in the protein monolayer experiment and bulk index sensing. K.-T.H. produced a master semester project on biosensing. T.D.G., T.N. and Y.Q. performed the stretchable optomechanical experiment. T.D.G., L.M.-M. and F.S. wrote the manuscript. All authors gave final consent to the manuscript.

Corresponding author

Correspondence to Fabien Sorin.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–14; Supplementary Sections 1–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das Gupta, T., Martin-Monier, L., Yan, W. et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019). https://doi.org/10.1038/s41565-019-0362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0362-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing