Article | Published:

Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems


Research on the distribution and effects of particulate plastic has intensified in recent years and yet, due to analytical challenges, our understanding of nanoplastic occurrence and behaviour has remained comparatively elusive. However, process studies could greatly aid in defining key parameters for nanoplastic interactions within and transfers between technical and environmental compartments. Here we provide a method to synthesize nanoplastic particles doped with a chemically entrapped metal used as a tracer, which provides a robust way to detect nanoplastics more easily, accurately and quantitatively in complex media. We show the utility of this approach in batch studies that simulate the activated sludge process of a municipal waste water treatment plant and so better understand the fate of nanoplastics in urban environments. We found that the majority of particles were associated with the sludge (>98%), with an average recovery of over 93% of the spiked material achieved. We believe that this approach can be developed further to study the fate, transport, mechanistic behaviour and biological uptake of nanoplastics in a variety of systems on different scales.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request

Additional information

Journal peer review information: Nature Nanotechnology thanks Albert Koelmans and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

  2. 2.

    Gigault, J. et al. Current opinion: what is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

  3. 3.

    da Costa, J. P., Santos, P. S., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the environment—sources, fates and effects. Sci. Total Environ. 566, 15–26 (2016).

  4. 4.

    Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. in Microplastic Contamination in Aquatic Environments (ed. Zeng, E.) 379–399 (Elsevier, Amsterdam, 2018).

  5. 5.

    Gigault, J., Pedrono, B., Maxit, B. & Ter Halle, A. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci. Nano 3, 346–350 (2016).

  6. 6.

    Oriekhova, O. & Stoll, S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ. Sci. Nano 5, 792–799 (2018).

  7. 7.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

  8. 8.

    Dümichen, E. et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174, 572–584 (2017).

  9. 9.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

  10. 10.

    Shim, W. J., Hong, S. H. & Eo, S. E. Identification methods in microplastic analysis: a review. Anal. Methods 9, 1384–1391 (2017).

  11. 11.

    Mintening, S. M., Bauerlein, P., Koelmans, A. A., Dekker, S. C. & van Wezel, A. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

  12. 12.

    Gigault, J., El Hadri, H., Reynaud, S., Deniau, E. & Grassl, B. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Anal. Bioanal. Chem. 409, 6761–6769 (2017).

  13. 13.

    Ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

  14. 14.

    Koelmans, A. A., Besseling, E. & Shim, W. J. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 325–340 (Springer, Berlin, 2015).

  15. 15.

    Chávez, J. L., Wong, J. L. & Duran, R. S. Core−shell nanoparticles: characterization and study of their use for the encapsulation of hydrophobic fluorescent dyes. Langmuir 24, 2064–2071 (2008).

  16. 16.

    Dai, S., Ravi, P. & Tam, K. C. Thermo- and photo-responsive polymeric systems. Soft Matter 5, 2513–2533 (2009).

  17. 17.

    Gruber, J. V. in Principles of Polymer Science and Technology (eds Goddard, E. D. & Gruber, J. V.) 217–274 (Marcell Dekker, New York, 1999).

  18. 18.

    Günay, K. A. et al. Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair. ACS Appl. Mater. Inter. 9, 24238–24249 (2017).

  19. 19.

    Murphy, D. S. Fabric softener technology: a review. J. Surfactants Deterg. 18, 199–204 (2015).

  20. 20.

    Hosseinkhani, B., Callewaert, C., Vanbeveren, N. & Boon, N. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnol. 32, 40–46 (2015).

  21. 21.

    Rochman, C. M. et al. Scientific evidence supports a ban on microbeads. Environ. Sci. Technol. 49, 10759–10761 (2015).

  22. 22.

    Dauvergne, P. The power of environmental norms: marine plastic pollution and the politics of microbeads. Environ. Polit. 27, 579–597 (2018).

  23. 23.

    Kole, P. J., Löhr, A. J., Van Belleghem, F. G. & Ragas, A. M. Wear and tear of tyres: a stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 14, 1265 (2017).

  24. 24.

    Wagner, S. et al. Tire wear particles in the aquatic environment—a review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100 (2018).

  25. 25.

    Soleimani, M. et al. Smart polymer nanoparticles designed for environmentally compliant coatings. J. Am. Chem. Soc. 133, 11299–11307 (2011).

  26. 26.

    Vogelsang, C. et al. Microplastics in Road Dust—Characteristics, Pathways and Measures Report no. 8257769665 (Norwegian Institute for Water Research, 2018).

  27. 27.

    Grass, R. N. et al. Tracking trace amounts of submicrometer silica particles in wastewaters and activated sludge using silica-encapsulated DNA barcodes. Environ. Sci. Technol. Lett. 1, 484–489 (2014).

  28. 28.

    Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro-and nanoplastics in Daphnia magna—quantification of body burdens and assessment of feeding rates and reproduction. Environ. Pollut. 228, 398–407 (2017).

  29. 29.

    Vriens, B. et al. Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland. Environ. Sci. Technol. 51, 10943–10953 (2017).

  30. 30.

    Okubo, M. in POLYCHAR 25—World Forum on Advanced Materials (eds Chan, C. H. & Salter, J.-M.) 307–325 (Wiley, Hoboken, 2017).

  31. 31.

    Beltzung, A. et al. Incorporation and distribution of noble metal atoms in polyacrylonitrile colloidal particles using different polymerization strategies. Polymer 145, 41–53 (2018).

  32. 32.

    Ryu, M. S. et al. Prediction of glass transition temperature and design of phase diagrams of butadiene rubber and styrene–butadiene rubber via molecular dynamics simulations. Phys. Chem. Chem. Phys. 19, 16498–16506 (2017).

  33. 33.

    Becker, Y., Mendez, M. P. & Rodriguez, Y. Polymer modified asphalt. Vis. Tecnol. 9, 39–50 (2001).

  34. 34.

    Mao, Y., Li, S., Fang, R. L. & Ploehn, H. J. Magadiite/styrene‐butadiene rubber composites for tire tread applications: effects of varying layer spacing and alternate inorganic fillers. J. Appl. Polym. Sci. 134, 44764 (2017).

  35. 35.

    Endo, K. Synthesis and structure of poly(vinyl chloride). Prog. Polym. Sci. 27, 2021–2054 (2002).

  36. 36.

    Moulay, S. Chemical modification of poly(vinyl chloride)—still on the run. Prog. Polym. Sci. 35, 303–331 (2010).

  37. 37.

    Kulich, D., Gaggar, S., Lowry, V. & Stepien, R. Acrylonitrile–Butadiene–Styrene Polymers (Wiley, Hoboken, 2002).

  38. 38.

    Booth, A. M., Hansen, B. H., Frenzel, M., Johnsen, H. & Altin, D. Uptake and toxicity of methylmethacrylate‐based nanoplastic particles in aquatic organisms. Environ. Toxicol. Chem. 35, 1641–1649 (2016).

  39. 39.

    Cole, M., Lindeque, P., Fileman, E., Halsband, C. & Galloway, T. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49, 1130–1137 (2015).

  40. 40.

    Sures, B., Singer, C. & Zimmermann, S. in Palladium Emissions in the Environment (eds Zereini, F. & Friedrich, A.) 489–499 (Springer, Berlin, 2006). 

  41. 41.

    Besseling, E., Quik, J. T., Sun, M. & Koelmans, A. A. Fate of nano- and microplastic in freshwater systems: a modeling study. Environ. Pollut. 220, 540–548 (2017).

  42. 42.

    Barton, L. E., Therezien, M., Auffan, M., Bottero, J.-Y. & Wiesner, M. R. Theory and methodology for determining nanoparticle affinity for heteroaggregation in environmental matrices using batch measurements. Environ. Eng. Sci. 31, 421–427 (2014).

  43. 43.

    Geitner, N. K., O’Brien, N. J., Turner, A. A., Cummins, E. J. & Wiesner, M. R. Measuring nanoparticle attachment efficiency in complex systems. Environ. Sci. Technol. 51, 13288–13294 (2017).

  44. 44.

    Barton, L. E., Auffan, M., Olivi, L., Bottero, J.-Y. & Wiesner, M. R. Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment. Environ. Pollut. 203, 122–129 (2015).

  45. 45.

    Sun, T. Y. et al. Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).

  46. 46.

    Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).

  47. 47.

    Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).

  48. 48.

    McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).

  49. 49.

    Magnusson, K. & Norén, F. Screening of Microplastic Particles in and Down-stream a Wastewater Treatment Plant (IVL Swedish Environmental Research Institute, 2014).

  50. 50.

    Browne, M. A., Galloway, T. S. & Thompson, R. C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44, 3404–3409 (2010).

  51. 51.

    Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).

  52. 52.

    Song, Y. K. et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 48, 9014–9021 (2014).

  53. 53.

    Zhao, S., Zhu, L., Wang, T. & Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Mar. Pollut. Bull. 86, 562–568 (2014).

  54. 54.

    Kaegi, R. et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 45, 3902–3908 (2011).

  55. 55.

    Westerhoff, P., Song, G., Hristovski, K. & Kiser, M. A. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monit. 13, 1195–1203 (2011).

  56. 56.

    Koelmans, A. A. et al. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).

Download references


We thank R. Kägi and M. Surette for providing discussions and feedback, M. Morbidelli for access to the equipment to synthesize the particles, G. Storti for discussions, L. Jin for the preliminary particle synthesis and H. Wu for facilitating this collaboration.

Author information

D.M.M. conceived of the study, conducted the particle synthesis and characterization and the WWTP batch experiments, wrote the manuscript and led the research team. A.B. synthesized the nanoplastics and contributed to the manuscript writing. S.F. performed WWTP batch studies and contributed to the manuscript writing. M.S. assisted in the study design. A.C. was involved in the particle synthesis and contributed to writing the manuscript. F.S. performed the early fundamental tests for the experimental work. All the authors have given approval to the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Denise M. Mitrano.

Supplementary information

  1. Supplementary Information

    Supplementary Text, Supplementary Figures 1–11, Supplementary Tables 1,2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Particle images.
Fig. 2: General stability of the nanoplastics.
Fig. 3: Representative plot for smooth-shelled (blue) and raspberry-shelled (orange) nanoplastics interacting with the mixed liquor illustrates removal with the sludge over time.
Fig. 4: Depth profiles of nanoplastics in settled activated sludge and rehomogenized sludge.