Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness


While most cancer nanomedicine is designed to eliminate cancer, the nanomaterial per se can lead to the formation of micrometre-sized gaps in the blood vessel endothelial walls. Nanomaterials-induced endothelial leakiness (NanoEL) might favour intravasation of surviving cancer cells into the surrounding vasculature and subsequently extravasation, accelerating metastasis. Here, we show that nanoparticles induce endothelial leakiness through disruption of the VE-cadherin–VE-cadherin homophilic interactions at the adherens junction. We show that intravenously injected titanium dioxide, silica and gold nanoparticles significantly accelerate both intravasation and extravasation of breast cancer cells in animal models, increasing the extent of existing metastasis and promoting the appearance of new metastatic sites. Our results add to the understanding of the behaviour of nanoparticles in complex biological systems. The potential for NanoEL needs to be taken into consideration when designing future nanomedicines, especially nanomedicine to treat cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TiO2 NPs may promote in vivo intravasation and extravasation of breast cancer cells by disrupting the blood vessel barrier.
Fig. 2: TiO2 NPs disrupted endothelial cell barrier integrity.
Fig. 3: Breast cancer cells exploited increased endothelial permeability arising from NanoEL.
Fig. 4: TiO2 NPs promote the intravasation of breast cancer cells in subcutaneous MDA-MB-231-Luc xenograft female NSG mice.
Fig. 5: TiO2 NPs facilitate the extravasation of circulating breast cancer cells in female NSG mice.
Fig. 6: TiO2 NP-induced vessel leakiness may have led to increased extravasation and subsequently higher tumour load in the liver and lungs in a TiO2 NP dose-dependent manner.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Steeg, P. S. Tumour metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    CAS  Google Scholar 

  2. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    CAS  Google Scholar 

  3. Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2012).

    CAS  Google Scholar 

  4. Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    CAS  Google Scholar 

  5. Reymond, N., d‘Água, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    CAS  Google Scholar 

  6. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    CAS  Google Scholar 

  7. Anderberg, C. et al. Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J. Exp. Med. 210, 563–579 (2013).

    CAS  Google Scholar 

  8. Zhou, F. et al. Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nat. Commun. 5, 3388 (2014).

    Google Scholar 

  9. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotech. 8, 61–68 (2012).

    Google Scholar 

  10. Tay, C. Y. et al. Reality check for nanomaterials-mediated therapy with 3D biomimetic culture systems. Adv. Funct. Mater. 26, 4046–4065 (2016).

    CAS  Google Scholar 

  11. Shi, X., von dem Bussche, A., Hurt, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 6, 714–719 (2011).

    CAS  Google Scholar 

  12. Molinaro, R. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15, 1037–1046 (2016).

    CAS  Google Scholar 

  13. Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11, 533–538 (2016).

    CAS  Google Scholar 

  14. Setyawati, M. I. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013).

    CAS  Google Scholar 

  15. Setyawati, M. I., Tay, C. Y., Bay, B. H. & Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 11, 5020–5030 (2017).

    CAS  Google Scholar 

  16. Tay, C. Y., Setyawati, M. I. & Leong, D. T. Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 11, 2764–2772 (2017).

    CAS  Google Scholar 

  17. Wang, J., Zhang, L., Peng, F., Shi, X. & Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 30, 3759–3767 (2018).

    CAS  Google Scholar 

  18. Qiu, Y. et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat. Commun. 8, 15594 (2017).

    CAS  Google Scholar 

  19. Ding, X. et al. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10, 41 (2019).

    Google Scholar 

  20. Li, L. et al. Actively targeted deep-tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater. 28, 1704623 (2018).

    Google Scholar 

  21. Peng, F. et al. Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem. Int. Ed. 52, 1457–1461 (2013).

    CAS  Google Scholar 

  22. Setyawati, M. I., Mochalin, V. M. & Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 10, 1170–1181 (2016).

    CAS  Google Scholar 

  23. Yamashita, K. et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321–328 (2011).

    CAS  Google Scholar 

  24. DeLoid, G. et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014).

    Google Scholar 

  25. Hirai, T. et al. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol. 11, 808–816 (2016).

    CAS  Google Scholar 

  26. Dejana, E. Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5, 261–270 (2004).

    CAS  Google Scholar 

  27. Xie, L. et al. Regulation of thrombin-induced lung endothelial cell barrier disruption by protein kinase C delta. PLoS One 11, e0158865 (2016).

    Google Scholar 

  28. Tay, C. Y. et al. Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett. 14, 83–88 (2014).

    CAS  Google Scholar 

  29. Setyawati, M. I. et al. Nano-TiO2 drives epithelial–mesenchymal transition in intestinal epithelial cancer cells. Small 14, 1800922 (2018).

    Google Scholar 

  30. Bettini, S. et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 7, 40373 (2017).

    CAS  Google Scholar 

  31. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    CAS  Google Scholar 

  32. Chao, Y. et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2, 611–621 (2018).

    Google Scholar 

  33. Elgrabli, D. et al. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS One 10, e0124490 (2015).

    Google Scholar 

  34. Rodriguez-Vita, J. & Morales-Ruiz, M. Down the liver sinusoidal endothelial cell (LSEC) hole. Is there a role for lipid rafts in LSEC fenestration? Hepatology 57, 1272–1274 (2013).

    Google Scholar 

  35. Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44, 8174–8199 (2015).

    CAS  Google Scholar 

  36. Bastús, N. G., Comenge, J. & Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27, 11098–11105 (2011).

    Google Scholar 

  37. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  Google Scholar 

Download references


This work was supported by Ministry of Education Academic Research Grants (R-279–000–418–112, R-279-000-498-114 and R148–000–217–112).

Author information

Authors and Affiliations



D.T.L. and H.K.H. conceived the hypotheses, designed the experiments, performed the analysis and interpretations, and wrote the paper. F.P., M.I.S. and J.K.T. designed and performed the experiments, analysed the results and wrote the paper. X.D. and J.P.W. performed the experiments. M.E.N. analysed the results.

Corresponding authors

Correspondence to Han Kiat Ho or David Tai Leong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1–25 and Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Setyawati, M.I., Tee, J.K. et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research