Article | Published:

Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube

Nature Nanotechnologyvolume 14pages161167 (2019) | Download Citation


Transport measurements have been an indispensable tool in studying conducting states of matter. However, there exists a large set of interesting states that are insulating, often due to electronic interactions or topology, and are difficult to probe via transport. Here, through an experiment on carbon nanotubes, we present a new approach capable of measuring insulating electronic states through their back action on nanomechanical motion. We use a mechanical pump–probe scheme, allowing the detection of shifts in both frequency and dissipation rate of mechanical vibrational modes, in an overall insulating system. As an example, we use this method to probe the non-conducting configurations of a double quantum dot, allowing us to observe the theoretically predicted signature of nanomechanical back action resulting from a coherently tunnelling electron. The technique opens a new way for measuring the internal electronic structure of a growing variety of insulating states in one- and two-dimensional systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Deshpande, V. V. et al. Mott insulating state in ultraclean carbon nanotubes. Science 323, 106–110 (2009).

  2. 2.

    Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4, 314–318 (2008).

  3. 3.

    Pecker, S. et al. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 9, 576–581 (2013).

  4. 4.

    Shapir, I. et al. Imaging the Wigner crystal of electrons in one dimension. Preprint at (2018).

  5. 5.

    Varsano, D. et al. Carbon nanotubes as excitonic insulators. Nat. Commun. 8, 1461 (2017).

  6. 6.

    Chen, C. et al. Modulation of mechanical resonance by chemical potential oscillation in graphene. Nat. Phys. 12, 240–244 (2016).

  7. 7.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

  8. 8.

    Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).

  9. 9.

    Yoo, M. J. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

  10. 10.

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

  11. 11.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

  12. 12.

    Huttel, A. K. et al. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano. Lett. 9, 2547–2552 (2009).

  13. 13.

    Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotech. 9, 1007–1011 (2014).

  14. 14.

    Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotech. 8, 493–496 (2013).

  15. 15.

    Benyamini, A., Hamo, A., Kusminskiy, S. V., von Oppen, F. & Ilani, S. Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 10, 151–156 (2014).

  16. 16.

    Schneider, B. H., Singh, V., Venstra, W. J., Meerwaldt, H. B. & Steele, G. A. Observation of decoherence in a carbon nanotube mechanical resonator. Nat. Commun. 5, 5819 (2014).

  17. 17.

    Okazaki, Y., Mahboob, I., Onomitsu, K., Sasaki, S. & Yamaguchi, H. Gate-controlled electromechanical backaction induced by a quantum dot. Nat. Commun. 7, 11132 (2016).

  18. 18.

    Deng, G. W. et al. Strongly coupled nanotube electromechanical resonators. Nano. Lett. 16, 5456–5462 (2016).

  19. 19.

    Ares, N. et al. Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett. 117, 170801 (2016).

  20. 20.

    Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

  21. 21.

    Zhu, J., Brink, M. & McEuen, P. L. Frequency shift imaging of quantum dots with single-electron resolution. Appl. Phys. Lett. 87, 242102 (2005).

  22. 22.

    Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

  23. 23.

    Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

  24. 24.

    Lassagne, B. et al. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

  25. 25.

    Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

  26. 26.

    Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

  27. 27.

    Castellanos-Gomez, A., Meerwaldt, H. B., Venstra, W. J., van der Zant, H. S. J. & Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012).

  28. 28.

    Gardner, J., Bennett, S. D. & Clerk, A. A. Mechanically probing coherent tunneling in a double quantum dot. Phys. Rev. B 84, 205316 (2011).

  29. 29.

    Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotech. 8, 569–574 (2013).

  30. 30.

    de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

  31. 31.

    Wiel, Wvander & Franceschi, S. De Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

  32. 32.

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

  33. 33.

    Armour, a, Blencowe, M. & Zhang, Y. Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor. Phys. Rev. B 69, 125313 (2004).

  34. 34.

    Clerk, A. A. & Bennett, S. Quantum nanoelectromechanics with electrons, quasi-particles and Cooper pairs: effective bath descriptions and strong feedback effects. New J. Phys. 7, 238 (2005).

  35. 35.

    Efroni, Y., Ilani, S. & Berg, E. Topological transitions and fractional charges induced by strain and a magnetic field in carbon nanotubes. Phys. Rev. Lett. 119, 147704 (2017).

  36. 36.

    Lotfizadeh, N., Senger, M. J., McCulley, D. R., Minot, E. D. & Deshpande, V. V. Sagnac electron interference as a probe of electronic structure. Preprint at (2018).

  37. 37.

    He, R., Feng, X. L., Roukes, M. L. & Yang, P. Self-transducing silicon nanowire electromechanical systems at room temperature. Nano. Lett. 8, 1756–1761 (2008).

  38. 38.

    Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization not Mott insulation. Preprint at (2018).

Download references


We thank A. Bachtold, F. Pistolesi and F. von Oppen for stimulating discussions and D. Mahalu for the e-beam writing. We further acknowledge support from the Minerva Foundation grant (712290).

Author information


  1. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel

    • Ilya Khivrich
    •  & Shahal Ilani
  2. Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA

    • Aashish A. Clerk


  1. Search for Ilya Khivrich in:

  2. Search for Aashish A. Clerk in:

  3. Search for Shahal Ilani in:


I.K. performed the experiments and analysed the data. I.K. and S.I. designed the experiments. I.K. and A.A.C. wrote the theoretical model. I.K. performed the numerical simulations. I.K., A.A.C. and S.I. contributed to its theoretical interpretation. I.K. and S.I. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Shahal Ilani.

Supplementary information

  1. Supplementary information

    Supplementary text and supplementary figures 1–7

About this article

Publication history