Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor

Abstract

The realization of the surface code for topological error correction is an essential step towards a universal quantum computer1,2,3. For single-atom qubits in silicon4,5,6,7, the need to control and read out qubits synchronously and in parallel requires the formation of a two-dimensional array of qubits with control electrodes patterned above and below this qubit layer. This vertical three-dimensional device architecture8 requires the ability to pattern dopants in multiple, vertically separated planes of the silicon crystal with nanometre precision interlayer alignment. Additionally, the dopants must not diffuse or segregate during the silicon encapsulation. Critical components of this architecture—such as nanowires9, single-atom transistors4 and single-electron transistors10–have been realized on one atomic plane by patterning phosphorus dopants in silicon using scanning tunnelling microscope hydrogen resist lithography11,12. Here, we extend this to three dimensions and demonstrate single-shot spin read-out with 97.9% measurement fidelity of a phosphorus dopant qubit within a vertically gated single-electron transistor with <5 nm interlayer alignment accuracy. Our strategy ensures the formation of a fully crystalline transistor using just two atomic species: phosphorus and silicon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A vertically gated SET for high-fidelity single-shot spin read-out.
Fig. 2: Etched trench registration markers.
Fig. 3: Use of kinetic growth manipulation to optimize the regrowth surface for second-layer lithography.
Fig. 4: Comparison of electrical stability of the vertical SET using top and in-plane gates.
Fig. 5: High-fidelity single-shot read-out of a donor qubit in a vertically gated SET.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang, D. S., Fowler, A. G. & Hollenberg, L. C. L. Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302 (2011).

    Article  Google Scholar 

  2. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A. 86, 032324 (2012).

    Article  Google Scholar 

  3. Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    Article  CAS  Google Scholar 

  4. Fuechsle, M. et al. A single-atom transistor. Nat. Nanotech. 7, 242–246 (2012).

    Article  CAS  Google Scholar 

  5. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  CAS  Google Scholar 

  6. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article  CAS  Google Scholar 

  7. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  8. Hill, C. D. et al. A surface code quantum computer in silicon. Sci. Adv. 1, e1500707 (2015).

    Article  Google Scholar 

  9. Weber, B. et al. Ohm’s law survives to the atomic scale. Science 335, 64–67 (2012).

    Article  CAS  Google Scholar 

  10. Büch, H., Mahapatra, S., Rahman, R., Morello, A. & Simmons, M. Y. Spin readout and addressability of phosphorus-donor clusters in silicon. Nat. Commun. 4, 143–147 (2013).

    Article  Google Scholar 

  11. Schofield, S. R. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

    Article  CAS  Google Scholar 

  12. Rueß, F. J. et al. Realization of atomically controlled dopant devices in silicon. Small 3, 563–567 (2007).

    Article  Google Scholar 

  13. Weber, B. et al. Spin blockade and exchange in Coulomb-confined silicon double quantum dots. Nat. Nanotech. 9, 430–435 (2014).

    Article  CAS  Google Scholar 

  14. McKibbin, S. R., Scappucci, G., Pok, W. & Simmons, M. Y. Epitaxial top-gated atomic-scale silicon wire in a three-dimensional architecture. Nanotechnology 24, 045303 (2013).

    Article  CAS  Google Scholar 

  15. Rueß, F. J., Goh, K. E. J. & Butcher, M. J. The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology 16, 2446–2449 (2005).

    Article  Google Scholar 

  16. Yamazaki, K., Fujiwara, A., Takahashi, Y., Namatsu, H. & Kurihara, K. Sub-10-nm overlay accuracy in electron beam lithography for nanometer-scale device fabrication. Jpn. J. Appl. Phys. 37, 6788–6791 (1998).

    Article  CAS  Google Scholar 

  17. Maile, B. E. et al. Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system. Jpn. J. Appl. Phys. 39, 6836–6842 (2000).

    Article  CAS  Google Scholar 

  18. McKibbin, S. R., Clarke, W. R. & Simmons, M. Y. Investigating the surface quality and confinement of Si:P δ-layers at different growth temperatures. Physica E 42, 1180–1183 (2010).

    Article  CAS  Google Scholar 

  19. Goh, K. E. J., Oberbeck, L., Simmons, M. Y., Hamilton, A. R. & Clark, R. G. Effect of encapsulation temperature on Si:P δ-doped layers. Appl. Phys. Lett. 85, 4953 (2004).

    Article  CAS  Google Scholar 

  20. Lin, D.-S., Ku, T.-S. & Sheu, T.-J. Thermal reactions of phosphine with Si(100): a combined photoemission and scanning-tunneling-microscopy study. Surf. Sci. 424, 7–18 (1999).

    Article  CAS  Google Scholar 

  21. Esser, M., Zoethout, E., Zandvliet, H. J. W., Wormeester, H. & Poelsema, B. Kinetic growth manipulation of Si(0 0 1) homoepitaxy. Surf. Sci. 552, 35–45 (2004).

    Article  CAS  Google Scholar 

  22. Mysliveček, J. et al. On the microscopic origin of the kinetic step bunching instability on vicinal Si(001). Surf. Sci. 520, 193–206 (2002).

    Article  Google Scholar 

  23. Keizer, J. G., Koelling, S., Koenraad, P. M. & Simmons, M. Y. Suppressing segregation in highly phosphorus doped silicon monolayers. ACS Nano 9, 12537–12541 (2015).

    Article  CAS  Google Scholar 

  24. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  25. Watson, T. F., Weber, B., House, M. G., Büch, H. & Simmons, M. Y. High-fidelity rapid initialization and read-out of an electron spin via the single donor D charge state. Phys. Rev. Lett. 115, 166806 (2015).

    Article  CAS  Google Scholar 

  26. Hsueh, Y.-L. et al. Spin-lattice relaxation times of single donors and donor clusters in silicon. Phys. Rev. Lett. 113, 246406 (2014).

    Article  Google Scholar 

  27. Keith, D. et al. Benchmarking high fidelity single-shot readout of semiconductor qubits. Preprint at https://arxiv.org/abs/1811.03630 (2018).

  28. McKibbin, S. R., Polley, C. M., Scappucci, G., Keizer, J. G. & Simmons, M. Y. Low resistivity, super-saturation phosphorus-in-silicon monolayer doping. Appl. Phys. Lett. 104, 123502 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Mira Koch. This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027). M.Y.S. acknowledges an ARC Laureate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.K., J.G.K. and M.Y.S. conceived and designed the experiment. M.K., J.G.K., P.P. and E.P. fabricated the devices. M.K. and P.P. obtained all electrical measurements. The data were analysed by M.K. and J.G.K., and discussed critically with all authors. M.K. performed the spin read-out analysis. M.G.H. performed the noise characterization. D.K. calculated the read-out fidelity of the device. The manuscript was written by M.K., J.G.K. and M.Y.S., with input from all other authors. M.Y.S. supervised the project.

Corresponding author

Correspondence to Matthias Koch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, M., Keizer, J.G., Pakkiam, P. et al. Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor. Nature Nanotech 14, 137–140 (2019). https://doi.org/10.1038/s41565-018-0338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0338-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing