Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures

Abstract

Quantum coherence and control is foundational to the science and engineering of quantum systems1,2. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements3,4,5,6. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified. Here we demonstrate such coherence and control of a superconducting circuit incorporating graphene-based Josephson junctions. Furthermore, we show that this device can be operated as a voltage-tunable transmon qubit7,8,9, whose spectrum reflects the electronic properties of massless Dirac fermions travelling ballistically4,5. In addition to the potential for advancing extensible quantum computing technology, our results represent a new approach to studying van der Waals materials using microwave photons in coherent quantum circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fabrication of graphene transmon qubits.
Fig. 2: Spectroscopy of a graphene transmon qubit.
Fig. 3: Rabi oscillation and energy relaxation of a graphene qubit.
Fig. 4: Qubit dephasing and Ramsey measurement.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotech. 10, 761–764 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article  Google Scholar 

  6. 6.

    Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Luthi, F. et al. Evolution of nanowire transmon qubits and their coherence in a magnetic field. Phys. Rev. Lett. 120, 100502 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Casparis, L. et al. Superconducting gatemon qubit based on a proximitized two-dimensional electron gas. Nat. Nanotech. 13, 915–919 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  Google Scholar 

  12. 12.

    Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Cottet, A. et al. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. J. Phys. Condens. Matter. 29, 433002 (2017).

    Article  Google Scholar 

  16. 16.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  19. 19.

    Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Khorasani, S. & Koottandavida, A. Nonlinear graphene quantum capacitors for electro-optics. npj 2D Mater. Appl. 1, 7 (2017).

    Article  Google Scholar 

  21. 21.

    Schmidt, F. E., Jenkins, M. D., Watanabe, K., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nat. Commun. 9, 4069 (2018).

    Article  Google Scholar 

  22. 22.

    Kroll, J. G. et al. Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions. Nat. Commun. 9, 4615 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Nanda, G. et al. Current-phase relation of ballistic graphene josephson junctions. Nano Lett. 17, 3396–3401 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Casparis, L. et al. Gatemon benchmarking and two-qubit operations. Phys. Rev. Lett. 116, 150505 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Hassler, F., Akhmerov, A. R. & Beenakker, C. W. J. The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation. New J. Phys. 13, 095004 (2011).

    Article  Google Scholar 

  27. 27.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Tinkham, M. Introduction to Superconductivity Ch. 6 (Dover Publications, Mineola, 2004).

  29. 29.

    Wang, J. I.-J. et al. Tunneling spectroscopy of graphene nanodevices coupled to large gap superconductors. Phys. Rev. B 98, 121441(R) (2018).

    Google Scholar 

  30. 30.

    Kringhøj, A. et al. Anharmonicity of a superconducting qubit with a few-mode Josephson junction. Phys. Rev. B 97, 060508 (2018).

    Article  Google Scholar 

  31. 31.

    Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Beenakker, C. W. J. Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. Phys. Rev. Lett. 67, 3836–3839 (1991).

    CAS  Article  Google Scholar 

  33. 33.

    Allen, M. T. et al. Spatially resolved edge currents and guided-wave electronic states in graphene. Nat. Phys. 12, 128–133 (2015).

    Article  Google Scholar 

  34. 34.

    Zhu, M. J. et al. Edge currents shunt the insulating bulk in gapped graphene. Nat. Commun. 8, 14552 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Mi, X. et al. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).

    Article  Google Scholar 

  36. 36.

    Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Fatemi, V. et al. Electrically tunable low density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Augeri, J. Birenbaum, P. Baldo, G. Fitch, M. Hellstrom, K. Magoon, A. Melville, P. Murphy, B. M. Niedzielski, B. Osadchy, D. Rosenberg, R. Slattery, C. Thoummaraj and D. Volfson at MIT Lincoln Laboratory for technical assistance. This research was funded in part by the US Army Research Office grant no. W911NF-17-S-0001, and by the Assistant Secretary of Defense for Research & Engineering via MIT Lincoln Laboratory under Air Force contract no. FA8721-05-C-0002. P.J.-H. and L.B. were partly supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4541. L.B. acknowledges support of Agence Nationale de la Recherche through grant ANR-18-CE47-0012 (JCJC QIPHSC). This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation (NSF) under award no. DMR-14-19807 and of Harvard CNS, supported by NSF ECCS under award no. 1541959. Growth of BN crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI grant numbers JP15K21722 and JP25106006. D.R.-L. acknowledges support from Obra Social ‘la Caixa’ Fellowship. M.K. acknowledges support from the Carlsberg Foundation. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements of the US Government.

Author information

Affiliations

Authors

Contributions

J.I.-J.W., L.B., S.G., T.P.O., P.J.-H. and W.D.O. conceived and designed the experiment. D.R.-L. and J.I.-J.W. fabricated the graphene devices. J.I.-J.W., F.Y. and S.G. conducted the measurements and analysed the data. D.K., G.O.S. and J.L.Y. supported sample fabrication. D.L.C., B.K., M.K. and P.K. supported measurements. K.W. and T.T. supplied the hBN crystals. J.I.-J.W., S.G. and W.D.O. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Joel I-Jan Wang or Pablo Jarillo-Herrero or William D. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J.IJ., Rodan-Legrain, D., Bretheau, L. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nature Nanotech 14, 120–125 (2019). https://doi.org/10.1038/s41565-018-0329-2

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research