High-voltage power transmission in electrical grids requires reliable and durable dielectric polymers for wire insulation1,2. Electrical treeing caused by high, local electric fields is a damaging process that leads to structure degradation and electrical conduction of dielectric materials, and ultimately, to catastrophic failure of the devices3,4,5. Here, we demonstrate that the addition of less than 0.1 volume per cent of superparamagnetic nanoparticles into a thermoplastic polymer enables the repair of regions damaged by electrical treeing and the restoration of the insulating properties. Under the application of an oscillating magnetic field, the embedded nanoparticles migrate to the electrical trees and generate a higher local temperature, which heals the electrical tree channels in the polymer. Our method allows us to regenerate the dielectric strength and electrical resistivity over multiple cycles of tree formation and healing, which could be used to increase the lifespan and sustainability of power cables for electronics and energy applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers (IET, London, 1992).

  2. 2.

    Tanaka, T., Okamoto, T., Nakanishi, K. & Miyamoto, T. Aging and related phenomena in modern electric-power systems. IEEE Trans. Electr. Insul. 28, 826–844 (1993).

  3. 3.

    Bamji, S. S., Bulinski, A. T., Chen, Y. & Densley, R. J. Threshold voltage for electrical tree inception in underground HV transmission cables. IEEE Trans. Electr. Insul. 27, 402–404 (1992).

  4. 4.

    Shimizu, N. & Laurent, C. Electrical tree initiation. IEEE Trans. Electr. Insul. 5, 651–659 (1998).

  5. 5.

    Dissado, L. A., Dodd, S. J., Champion, J. V., Williams, P. I. & Alison, J. M. Propagation of electrical tree structures in solid polymeric insulation. IEEE Trans. Dielect. Electr. Insul. 4, 259–279 (1997).

  6. 6.

    Jarvid, M. et al. A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897–902 (2015).

  7. 7.

    Cherney, E. A. Nanodielectrics applications—today and tomorrow. IEEE Electr. Insul. Mag. 29, 59–65 (2013).

  8. 8.

    Salvatierra, L. M. et al. Self-healing during electrical treeing: a feature of the two-phase liquid–solid nature of silicone gels. IEEE Trans. Dielect. Electr. Insul. 23, 757–767 (2016).

  9. 9.

    Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S. & White, S. R. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016).

  10. 10.

    Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010).

  11. 11.

    Xing, L. et al. Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv. Funct. Mater. 26, 3524 (2016).

  12. 12.

    Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).

  13. 13.

    Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

  14. 14.

    Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

  15. 15.

    Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

  16. 16.

    White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

  17. 17.

    Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. & White, S. R. Self-healing materials with microvascular networks. Nat. Mater. 6, 581–585 (2007).

  18. 18.

    White, S. R. et al. Restoration of large damage volumes in polymers. Science 344, 620–623 (2014).

  19. 19.

    Li, J. Y., Zhang, L. & Ducharme, S. Electric energy density of dielectric nanocomposites. Appl. Phys. Lett. 90, 132901 (2007).

  20. 20.

    Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

  21. 21.

    Yoonessi, M. et al. Self-healing of core-shell magnetic polystyrene nanocomposites. ACS Appl. Mater. Interfaces 7, 16932–16937 (2015).

  22. 22.

    Ahmed, A. S. & Ramanujan, R. V. Magnetic field triggered multicycle damage sensing and self healing. Sci. Rep. 5, 13773 (2015).

  23. 23.

    Gupta, S., Zhang, Q., Emrick, T., Balazs, A. C. & Russell, T. P. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nat. Mater. 5, 229–233 (2006).

  24. 24.

    Lee, J. Y., Buxton, G. A. & Balazs, A. C. Using nanoparticles to create self-healing composites. J. Chem. Phys. 121, 5531–5540 (2004).

  25. 25.

    Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).

  26. 26.

    Fortin, J. et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007).

  27. 27.

    Kim, Y. H. & Wool, R. P. A theory of healing at a polymer–polymer interface. Macromolecules 16, 1115–1120 (1983).

  28. 28.

    Stone, G. C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Electr. Insul. 12, 891–904 (2005).

  29. 29.

    Kim, H. et al. Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory 2, 383–400 (2016).

  30. 30.

    Schneider, P. E., Horio, M. & Lorenz, R. D. Evaluation of point field sensing in IGBT modules for high-bandwidth current measurement. IEEE Trans. Ind. Appl. 49, 1430–1437 (2013).

Download references


This work was supported by the Program of National Key Basis and Development Plan (973) (grant 2014CB239505 to J. He). The scanning transmission electron microscopy was performed in Beijing Neurosurgical Institute (China). The authors thank C.J. Cao (Carl Zeiss Co. Ltd, Shanghai, China) for sample mounting method and imaging technology support in the computed micro-X-ray tomography tests, and Z.X. Cao (Object Research Systems Inc., Montreal, Canada) for assistance with 3D reconstruction and analysis.

Author information


  1. State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing, China

    • Yang Yang
    • , Jinliang He
    • , Qi Li
    • , Lei Gao
    • , Jun Hu
    • , Rong Zeng
    •  & Shan X. Wang
  2. Department of Chemical Engineering, Stanford University, Stanford, CA, USA

    • Jian Qin
  3. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA

    • Shan X. Wang
  4. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    • Shan X. Wang
  5. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA

    • Qing Wang


  1. Search for Yang Yang in:

  2. Search for Jinliang He in:

  3. Search for Qi Li in:

  4. Search for Lei Gao in:

  5. Search for Jun Hu in:

  6. Search for Rong Zeng in:

  7. Search for Jian Qin in:

  8. Search for Shan X. Wang in:

  9. Search for Qing Wang in:


J. He, Q.L., Q.W. and Y.Y. conceived and designed the experiments. Y.Y., Q.L., L.G. and J. Hu carried out the experiments. Y.Y. and J.Q. performed simulations. Y.Y., J. He, Q.L., R.Z., Q.W. and S.X.W. analysed the data. Q.L., Q.W. and J.He wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jinliang He or Qi Li or Qing Wang.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–19 Supplementary Table 1–7

About this article

Publication history