Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Poling of an artificial magneto-toroidal crystal

Abstract

Although ferromagnetism is known to be of enormous importance, the exploitation of materials with a compensated (for example, antiferromagnetic) arrangement of long-range ordered magnetic moments is still in its infancy. Antiferromagnetism is more robust against external perturbations, exhibits ultrafast responses of the spin system1 and is key to phenomena such as exchange bias2,3, magnetically induced ferroelectricity4 or certain magnetoresistance phenomena5. However, there is no conjugate field for the manipulation of antiferromagnetic order, hindering both its observation and direct manipulation. Only recently, direct poling of a particular antiferromagnet was achieved with spintronic approaches6. An interesting alternative to antiferromagnetism is ferrotoroidicity—a recently established fourth form of ferroic order7,8. This is defined as a vortex-like magnetic state with zero net magnetization, yet with a spontaneously occurring toroidal moment9. As a hallmark of ferroic order, there must be a conjugate field that can manipulate the order parameter. For ferrotoroidic materials, this is a toroidal field—a magnetic vortex field violating both space-inversion and time-reversal symmetry analogous to the toroidal moment10. However, the nature and generation of the toroidal field remain elusive for conventional crystalline systems. Here, we demonstrate the creation of an artificial crystal11,12 consisting of mesoscopic planar nanomagnets with a magneto-toroidal-ordered ground state. Effective toroidal fields of either sign are applied by scanning a magnetic tip over the crystal. Thus, we achieve local control over the orientation of the toroidal moment despite its zero net magnetization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial magneto-toroidal crystal.
Fig. 2: Magnetization curve and ferrotoroidic ground state.
Fig. 3: Generation of a toroidal poling field at the mesoscale.
Fig. 4: Experimental demonstration of magneto-toroidal poling.

Similar content being viewed by others

Data availability

The data that support the figures within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Sander, D. et al. The 2017 Magnetism Roadmap. J. Phys. D 50, 363001 (2017).

    Article  Google Scholar 

  2. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 904 (1957).

    Article  CAS  Google Scholar 

  3. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  4. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

  5. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  CAS  Google Scholar 

  6. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  7. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Mater. 20, 434203 (2008).

    Article  Google Scholar 

  8. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  CAS  Google Scholar 

  9. Dubovik, V. M. & Tugushev, V. V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145–202 (1990).

    Article  Google Scholar 

  10. Ederer, C. & Spaldin, N. A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).

    Article  Google Scholar 

  11. Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Mat. 25, 363201 (2013).

    Article  CAS  Google Scholar 

  12. Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article  CAS  Google Scholar 

  13. Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  CAS  Google Scholar 

  14. Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

    Article  CAS  Google Scholar 

  15. Tolédano, P. et al. Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015).

    Article  Google Scholar 

  16. Bedanta, S. & Kleemann, W. Supermagnetism. J. Phys. D 42, 013001 (2009).

    Article  Google Scholar 

  17. Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).

    Article  CAS  Google Scholar 

  18. Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).

    Article  CAS  Google Scholar 

  19. Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat. Nanotech. 9, 514–519 (2014).

    Article  CAS  Google Scholar 

  20. Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).

    Article  CAS  Google Scholar 

  21. Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).

    Article  CAS  Google Scholar 

  22. Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article  CAS  Google Scholar 

  23. Gartside, J. C., Burn, D. M., Cohen, L. F. & Branford, W. R. A novel method for the injection and manipulation of magnetic charge states in nanostructures.Sci. Rep. 6, 32864 (2016).

    Article  CAS  Google Scholar 

  24. Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962–966 (2016).

    Article  CAS  Google Scholar 

  25. Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing.Nat. Nanotech. 13, 53–58 (2018).

    Article  CAS  Google Scholar 

  26. Luttinger, J. M. & Tisza, L. Theory of dipole interaction in crystals. Phys. Rev. 70, 954–964 (1946).

    Article  CAS  Google Scholar 

  27. Alkadour, B., Mercer, J. I., Whitehead, J. P., Southern, B. W. & van Lierop, J. Dipolar ferromagnetism in three-dimensional superlattices of nanoparticles. Phys. Rev. B 95, 214407 (2017).

    Article  Google Scholar 

  28. Jaafar, M. et al. Control of the chirality and polarity of magnetic vortices in triangular nanodots.Phys. Rev. B 81, 054439 (2010).

    Article  Google Scholar 

  29. Zheng, Y. & Chen, W. J. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics. Rep. Prog. Phys. 80, 086501 (2017).

    Article  Google Scholar 

  30. Arima, T. Magneto-electric optics in non-centrosymmetric ferromagnets. J. Phys. Condens. Mater. 20, 434211 (2008).

    Article  Google Scholar 

  31. Szaller, D., Bordács, S. & Kézsmárki, I.Symmetry conditions for nonreciprocal light propagation in magnetic crystals.Phys. Rev. B 87, 014421 (2013).

    Article  Google Scholar 

  32. Tomita, S., Kurosawa, H., Ueda, T. & Sawada, K. Metamaterials with magnetism and chirality. J. Phys. D 51, 083001 (2018).

    Article  Google Scholar 

  33. Toyoda, S. et al. One-way transparency of light in multiferroic CuB2O4.Phys. Rev. Lett. 115, 267207 (2015).

    Article  CAS  Google Scholar 

  34. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin & New York, 1998).

Download references

Acknowledgements

We thank S. Gliga for initial discussions. This work was funded by an ETH Research Grant (grant number ETH-28 14-1 ‘Resonant optical magnetoelectric effect in magnetic nanostructures’ (to J.L. and M.F.)).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion and interpretation of the experiment. J.L., C.D. and M.F. wrote the manuscript with input from all co-authors. C.D. fabricated the nanomagnetic structures. J.L. performed the LMOKE and MFM experiments and micromagnetic calculations. P.M.D. and J.L. developed the theoretical description. M.F. and L.J.H. supervised the study.

Corresponding authors

Correspondence to Jannis Lehmann or Manfred Fiebig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, J., Donnelly, C., Derlet, P.M. et al. Poling of an artificial magneto-toroidal crystal. Nature Nanotech 14, 141–144 (2019). https://doi.org/10.1038/s41565-018-0321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0321-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing