Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of nanolasers

Abstract

Nanolasers generate coherent light at the nanoscale. In the past decade, they have attracted intense interest, because they are more compact, faster and more power-efficient than conventional lasers. Thanks to these capabilities, nanolasers are now an emergent tool for a variety of practical applications. In this Review, we explain the intrinsic merits of nanolasers and assess recent progress on their applications, particularly for optical interconnects, near-field spectroscopy and sensing, optical probing for biological systems and far-field beam synthesis through near-field eigenmode engineering. We highlight the scientific and engineering challenges that remain for forging nanolasers into powerful tools for nanoscience and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and intrinsic merits of nanolasers.
Fig. 2: Relationships between light output power and key nanolaser parameters relevant to optical interconnects.
Fig. 3: Nanolasers for optical interconnects.
Fig. 4: Near-field applications of nanolasers.
Fig. 5: Eigenmode engineering of nanolasers.

Similar content being viewed by others

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Google Scholar 

  2. What is NIF? https://lasers.llnl.gov/about/what-is-nif

  3. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    CAS  Google Scholar 

  4. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  5. Stockman, M. I. Nanoplasmonic sensing and detection. Science 348, 287–288 (2015).

    CAS  Google Scholar 

  6. Stockman, M. I. et al. Roadmap on plasmonics. J. Opt. 20, 043001 (2018).

    Google Scholar 

  7. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    CAS  Google Scholar 

  8. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    CAS  Google Scholar 

  9. Johnson, J. C. et al. Single nanowire lasers. J. Phys. Chem. B 105, 11387–11390 (2001).

    CAS  Google Scholar 

  10. Eaton, S. W., Fu, A., Wong, A. B., Ning, C.-Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 1–11 (2016).

    Google Scholar 

  11. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  12. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007). This work demonstrates a metal-based nanolaser.

    CAS  Google Scholar 

  13. Nezha, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon 4, 395–399 (2010).

    Google Scholar 

  14. Lu, C.-Y., Chang, S. W., Chuang, S. L., Germann, T. D. & Bimberg, D. Metal-cavity surface-emitting microlaser at room temperature. Appl. Phys. Lett. 96, 251101 (2010).

    Google Scholar 

  15. Kim, M. W. & Ku, P.-C. Lasing in a metal-clad microring resonator. Appl. Phys. Lett. 98, 131107 (2011).

    Google Scholar 

  16. Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85, 041301(R) (2012).

    Google Scholar 

  17. Ding, K. et al. An electrical injection metallic cavity nanolaser with azimuthal polarization. Appl. Phys. Lett. 102, 041110 (2013).

    Google Scholar 

  18. Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013).

    CAS  Google Scholar 

  19. Gu, Q. et al. Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers. IEEE J. Quant. Electron. 50, 499–509 (2014).

    CAS  Google Scholar 

  20. Pan, S. H., Gu, Q., Amili, A. E., Vallini, F. & Fainman, Y. Dynamic hysteresis in a coherent high-β nanolaser. Optica 3, 1260–1265 (2016).

    CAS  Google Scholar 

  21. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). This work demonstrates a plasmonic nanowire laser.

    CAS  Google Scholar 

  22. Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    CAS  Google Scholar 

  23. Liu, X., Zhang, Q., Yip, J. N., Xiong, Q. & Sum, T. C. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett. 13, 5336–5343 (2013).

    CAS  Google Scholar 

  24. Wu, X. et al. Hybrid photon–plasmon nanowire lasers. Nano Lett. 13, 5654–5659 (2013).

    CAS  Google Scholar 

  25. Sidiropoulos, T. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 10, 870–876 (2014).

    CAS  Google Scholar 

  26. Zhang, Q. et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014).

    CAS  Google Scholar 

  27. Lu, Y. J. et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett. 14, 4381–4388 (2014).

    CAS  Google Scholar 

  28. Ho, J. F. et al. Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser. ACS Photonics 2, 165–171 (2015).

    CAS  Google Scholar 

  29. Ho, J. et al. A nanowire-based plasmonic quantum dot laser. Nano Lett. 16, 2845–2850 (2016).

    CAS  Google Scholar 

  30. Chou, Y. H. et al. High-operation-temperature plasmonic nanolasers on single-crystalline aluminium. Nano Lett. 16, 3179–3186 (2016).

    CAS  Google Scholar 

  31. Yu, H. C. et al. Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. Nanoscale 8, 19536–19540 (2016).

    CAS  Google Scholar 

  32. Zhang, Q. et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material. ACS Photonics 4, 2789–2796 (2017).

    CAS  Google Scholar 

  33. Yu, H. et al. Influence of silver film quality on the threshold of plasmonic nanowire lasers. Adv. Optical Mater. 5, 1600856 (2017).

    Google Scholar 

  34. Lee, C. T. et al. Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength. ACS Photonics 4, 1431–1439 (2017).

    CAS  Google Scholar 

  35. Kress, S. J. P. et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers. Sci. Adv. 3, e1700688 (2017).

    Google Scholar 

  36. Lu, J. et al. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers. ACS Photonics 4, 2419–2424 (2017).

    CAS  Google Scholar 

  37. Liu, S. et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl. Phys. Lett. 112, 231904 (2018).

    Google Scholar 

  38. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    CAS  Google Scholar 

  39. Nguyen, N. B. et al. Hybrid gap plasmon GaAs nanolasers. Appl. Phys. Lett. 111, 261107 (2017).

    Google Scholar 

  40. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    CAS  Google Scholar 

  41. Meng, X. G., Kildishev, A. V., Fujita, K., Tanaka, K. & Shalaev, V. M. Wavelength-tunable spasing in the visible. Nano Lett. 13, 4106–4112 (2013).

    CAS  Google Scholar 

  42. Zhang, C. et al. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett. 15, 1382–1387 (2015).

    CAS  Google Scholar 

  43. Galanzha, E. I. Spaser as a biological probe. Nat. Commun. 8, 15528 (2017). This work introduces a spaser for biological probing.

    CAS  Google Scholar 

  44. Yu, K., Lakhani, A. & Wu, M. C. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express 18, 8790–8799 (2010).

    CAS  Google Scholar 

  45. Kwon, S. H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–3683 (2010).

    CAS  Google Scholar 

  46. Ma, R. M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011).

    CAS  Google Scholar 

  47. Ma, R.-M., Ota, S., Li, Y., Yang, S. & Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotech. 9, 600–604 (2014).

    CAS  Google Scholar 

  48. Wang, X.-Y. et al. Lasing enhanced surface plasmon resonance sensing. Nanophotonics 5, 52–58 (2016). This work introduces plasmonic nanolaser for sensing in a biochemical environment.

    Google Scholar 

  49. Guo, C.-C., Xiao, J.-L., Yang, Y.-D., Zhu, Z.-H. & Huang, Y.-Z. Lasing characteristics of wavelength-scale aluminum/silica coated square cavity. IEEE Photonics Technol. Lett. 28, 217–220 (2016).

    CAS  Google Scholar 

  50. Liu, N. Lithographically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers. Nano Lett. 16, 7822–7828 (2016).

    CAS  Google Scholar 

  51. Chen, H.-Z. et al. Imaging the dark emission of spasers. Sci. Adv. 3, e1601962 (2017).

    Google Scholar 

  52. Wang, S. et al. High-yield plasmonic nanolasers with superior stability for sensing in aqueous solution. ACS Photonics 4, 1355–1360 (2017).

    CAS  Google Scholar 

  53. Wang, S. et al. Unusual scaling laws for plasmonic lasers beyond diffraction limit. Nat. Commun. 8, 1889 (2017). This work clarifies the viability of metal confinement and feedback strategies in laser technology.

    Google Scholar 

  54. Huang, C. et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 12, 3865–3874 (2018).

    CAS  Google Scholar 

  55. Lakhani, A. M., Kim, M. K., Lau, E. K. & Wu, M. C. Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011).

    CAS  Google Scholar 

  56. Keshmarzi, E. K., Tait, R. N. & Berini, P. Single-mode surface plasmon distributed feedback lasers. Nanoscale 10, 5914–5922 (2018).

    Google Scholar 

  57. Cheng, P.-J. et al. High-performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications. ACS Photonics 5, 2638–2644 (2018).

    CAS  Google Scholar 

  58. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012). This work shows a nanolaser with spontaneous emission coupling factor close to unity.

    CAS  Google Scholar 

  59. Hayenga, W. E. et al. Second-order coherence properties of metallic nanolasers. Optica 3, 1187–1193 (2016).

    CAS  Google Scholar 

  60. Ma, R. M., Yin, X. B., Oulton, R. F., Sorger, V. J. & Zhang, X. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396–5402 (2012). This work demonstrates a waveguide-embedded plasmonic nanolaser.

    CAS  Google Scholar 

  61. Chou, Y.-H. et al. Ultracompact pseudowedge plasmonic lasers and laser arrays. Nano Lett. 18, 747–753 (2018).

    CAS  Google Scholar 

  62. Symonds, C. et al. Confined Tamm plasmon lasers. Nano Lett. 13, 3179–3184 (2013).

    CAS  Google Scholar 

  63. Lheureux, G. Polarization-controlled confined Tamm plasmon lasers. ACS Photonics 2, 842–848 (2015).

    CAS  Google Scholar 

  64. Shen, K. C. et al. Deep-ultraviolet hyperbolic metacavity laser. Adv. Mater. 30, 1706918 (2018).

    Google Scholar 

  65. Wang, X.-Y., Chen, H.-Z., Wang, S., Zhang, S. & Ma, R.-M. Chiral-reversing vortex radiation from a single emitter by eigenstates phase locking. https://arXiv.org/1707.01055 (2017).

  66. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotech. 8, 506–511 (2013). This work reports a plasmonic array laser with a configuration of metal particles.

    CAS  Google Scholar 

  67. Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013). This work reports a plasmonic array laser with a configuration of metal holes.

    Google Scholar 

  68. Yang, A. K. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 6939 (2015).

    CAS  Google Scholar 

  69. Schokker, A. H. & Koenderink, A. F. Lasing in quasi-periodic and aperiodic plasmon lattices. Optica 3, 686–693 (2016).

    CAS  Google Scholar 

  70. Tenner, V. T., de Dood, M. J. A. & van Exter, M. P. Measurement of the phase and intensity profile of surface plasmon laser emission. ACS Photonics 3, 942–946 (2016).

    CAS  Google Scholar 

  71. Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotech. 12, 889–894 (2017).

    CAS  Google Scholar 

  72. Wang, D. et al. Stretchable nanolasing from hybrid quadupole plasmons. Nano Lett. 18, 4549–4555 (2018).

    CAS  Google Scholar 

  73. Kim, H., Lee, W.-J., Farrell, A. C., Balgarkashi, A. & Huffaker, D. L. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett. 17, 5244–5250 (2017).

    CAS  Google Scholar 

  74. Ha, S. T. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotech. https://doi.org/10.1038/s41565-018-0245-5 (2018). This work demonstrates a dielectric nanoparticle array laser.

  75. Yokoyama, H. & Brorson, S. Rate equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989).

    CAS  Google Scholar 

  76. Björk, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quant. Electron. 27, 2386–2396 (1991).

    Google Scholar 

  77. Yokoyama, H. et al. Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities. Opt. Quant. Electron. 24, S245–S272 (1992).

    CAS  Google Scholar 

  78. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  79. van Exter, M. P., Nienhuis, G. & Woerdman, J. P. Two simple expressions for the spontaneous emission factor β. Phys. Rev. A 54, 3553 (1996).

    Google Scholar 

  80. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    CAS  Google Scholar 

  81. Lau, E. K., Lakhani, A., Tucker, R. S. & Wu, M. C. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790 (2009).

    CAS  Google Scholar 

  82. Ni, C.-Y. A. & Chuang, S. L. Theory of high-speed nanolasers and nanoLEDs. Opt. Express 20, 16450 (2012).

    CAS  Google Scholar 

  83. Pan, S. H., Deka, S. S., Amili, A. E., Gu, Q. & Fainman, Y. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progr. Quant. Electron. 59, 1–18 (2018).

    Google Scholar 

  84. Wang, S., Chen, H.-Z. & Ma, R.-M. High performance plasmonic nanolasers with external quantum efficiency exceed 10%. Nano Lett. https://doi.org/10.1021/acs.nanolett.8b03890 (2018).

  85. Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

    CAS  Google Scholar 

  86. Cisco. The Zettabyte Era: Trends and Analysis (Cisco, 2017); https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

  87. Tucker, R. S. Green optical communications part II: energy limitations in networks. IEEE J. Sel. Top. Quant. Electron. 17, 261–274 (2011).

    CAS  Google Scholar 

  88. Tatum, J. A. et al. VCSEL-based interconnects for current and future data centers. J. Lightw. Technol. 33, 727–732 (2015).

    Google Scholar 

  89. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    CAS  Google Scholar 

  90. Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmonemitting diodes. Nat. Photon 8, 468–473 (2014).

    CAS  Google Scholar 

  91. Strologas, J. & Hess, K. Diffusion capacitance and laser diodes. IEEE Trans. Electron Devices 51, 506–509 (2004).

    Google Scholar 

  92. Agrawal, G. P. Fiber-optic Communication Systems. 3rd edition (Wiley, New York, 2002).

    Google Scholar 

  93. Coldren, L. A. Diode Lasers and Photonic Integrated Circuits. 2nd edition (Wiley, New York, 2012).

    Google Scholar 

  94. Kim, M.-K., Lakhani, A. M. & Wu, M. C. Efficient waveguide-coupling of metal-clad nanolaser cavities. Opt. Express 19, 23504–23512 (2011).

    CAS  Google Scholar 

  95. Dolores-Calzadilla, V. et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 14323 (2017).

    CAS  Google Scholar 

  96. Homola, J. Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006).

  97. Zhu, W. et al. Surface plasmon polariton laser based on a metallic trench Fabry–Pérot resonator. Sci. Adv. 3, e1700909 (2017).

    Google Scholar 

  98. Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nat. Photon. 5, 406–410 (2011).

    CAS  Google Scholar 

  99. Fan, X. & Yun, S. H. The potential of optofluidic biolasers. Nat. Methods 11, 141–147 (2014).

    CAS  Google Scholar 

  100. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photon. 9, 572–576 (2015).

    CAS  Google Scholar 

  101. McGloin, D. Cellular lasers. Nat. Photon. 9, 559–560 (2015).

    CAS  Google Scholar 

  102. Schubert, M. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652 (2015).

    CAS  Google Scholar 

  103. Chen, Y.-C., Chen, Q. & Fan, X. Lasing in blood. Optica 3, 809 (2016).

    CAS  Google Scholar 

  104. Chen, Y.-C. et al. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng. 1, 724–735 (2017).

    Google Scholar 

  105. Martino, N. et al. Micron-sized laser particles for massively multiplexed cellular labelling and tracking. In Proc. CLEO JTh5C.6 (OSA, 2018).

  106. Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902 (2016).

    Google Scholar 

  107. Liu, X. W. et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett. 118, 076101 (2017).

    Google Scholar 

  108. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992).

    CAS  Google Scholar 

  109. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161 (2011).

    CAS  Google Scholar 

  110. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464 (2016).

    CAS  Google Scholar 

  111. Wang, X.-Y., Chen, H.-Z., Li, Y., Li, B. & Ma, R.-M. Microscale vortex laser with controlled topological charge. Chin. Phys. B 25, 124211 (2016).

    Google Scholar 

  112. Zhen, B. et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Google Scholar 

  113. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    CAS  Google Scholar 

  114. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    CAS  Google Scholar 

  115. Bandres, M. A. et al. Topological insulator laser: experiments. Science 356, eaar4005 (2018).

    Google Scholar 

  116. Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    Google Scholar 

  117. Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

    Google Scholar 

  118. Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Google Scholar 

  119. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nat. Photon . 2, 351–354 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 11574012, 11774014, 61521004), the Youth 1000 Talents Plan Fund, UK Engineering and Physical Sciences Research council (EP/M013812/1), the Leverhulme Trust (RPG-2016-064) and the EU’s Marie Skłodowska-Curie Actions (PIRG08-GA-2010-277080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Min Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, RM., Oulton, R.F. Applications of nanolasers. Nature Nanotech 14, 12–22 (2019). https://doi.org/10.1038/s41565-018-0320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0320-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing