Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics

Abstract

Despite tremendous progress in efficiency and stability, perovskite solar cells are still facing the challenge of upscaling. Here we present unique advantages of reactive polyiodide melts for solvent- and adduct-free reactionary fabrication of perovskite films exhibiting excellent quality over large areas. Our method employs a nanoscale layer of metallic Pb coated with stoichiometric amounts of CH3NH3I (MAI) or mixed CsI/MAI/NH2CHNH2I (FAI), subsequently exposed to iodine vapour. The instantly formed MAI3(L) or Cs(MA,FA)I3(L) polyiodide liquid converts the Pb layer into a pure perovskite film without byproducts or unreacted components at nearly room temperature. We demonstrate highly uniform and relatively large area MAPbI3 perovskite films, such as 100 cm2 on glass/fluorine-doped tin oxide (FTO) and 600 cm2 on flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. As a proof-of-concept, we demonstrate solar cells with reverse scan power conversion efficiencies of 16.12% (planar MAPbI3), 17.18% (mesoscopic MAPbI3) and 16.89% (planar Cs0.05MA0.2FA0.75PbI3) in the standard FTO/c(m)-TiO2/perovskite/spiro-OMeTAD/Au architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of large-area MAPbI3 films of high quality by the RP-MAGIC method.
Fig. 2: In situ studies of Pb/MAI bilayer conversion into a MAPbI3 perovskite film in iodine vapour.
Fig. 3: Characterization of optoelectronic properties of large-area MAPbI3 thin films fabricated by the RP-MAGIC method.
Fig. 4: Pb–MAI–I2 phase diagram and melting temperatures of reactive polyiodides.
Fig. 5: Comparison of single- and triple-cation hybrid perovskite films fabricated by the RP-MAGIC method.
Fig. 6: Characterization of the solar cells with MAPbI3 absorber layers fabricated by the RP-MAGIC method.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  Google Scholar 

  3. NREL Best Research-Cell Efficiencies; https://www.nrel.gov/pv/assets/images/efficiency-chart.png

  4. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 203–206 (2016).

    Article  Google Scholar 

  5. Chang, N. L. et al. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol. Energy Mater. Sol. Cells 174, 314–324 (2018).

    Article  CAS  Google Scholar 

  6. Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  Google Scholar 

  7. Guchhait, A. et al. Over 20% efficient CIGS-perovskite tandem solar cells. ACS Energy Lett. 2, 807–812 (2017).

    Article  CAS  Google Scholar 

  8. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  Google Scholar 

  9. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  10. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites. Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    Article  CAS  Google Scholar 

  11. Tress, W., Correa Baena, J. P., Saliba, M., Abate, A. & Graetzel, M. Inverted current–voltage hysteresis in mixed perovskite solar cells. Polarization, energy barriers, and defect recombination. Adv. Energy Mater. 6, 1600396 (2016).

    Article  Google Scholar 

  12. Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

    Article  Google Scholar 

  13. Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    Article  CAS  Google Scholar 

  14. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    Article  CAS  Google Scholar 

  15. Di Giacomo, F. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 181, 53–59 (2018).

    Article  Google Scholar 

  16. Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

    Article  CAS  Google Scholar 

  17. Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by redissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016).

    Article  CAS  Google Scholar 

  18. Zhou, Y., Game, O. S., Pang, S. & Padture, N. P. Microstructures of organometal trihalide perovskites for solar cells. Their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827–4839 (2015).

    Article  CAS  Google Scholar 

  19. Cotella, G. et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369 (2017).

    Article  CAS  Google Scholar 

  20. Schmidt, T. M., Larsen-Olsen, T. T., Carlé, J. E., Angmo, D. & Krebs, F. C. Upscaling of perovskite solar cells. Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).

    Article  Google Scholar 

  21. Das, S. et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2, 680–686 (2015).

    Article  CAS  Google Scholar 

  22. Yang, Z. et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015).

    Article  Google Scholar 

  23. Liu, J. et al. Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl. Mater. Interfaces 7, 24008 (2015).

    Article  CAS  Google Scholar 

  24. Yang, M. et al. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016).

    Article  CAS  Google Scholar 

  25. Matsui, T., Seo, J.-Y., Saliba, M., Zakeeruddin, S. M. & Grätzel, M. Room-temperature formation of highly crystalline multication perovskites for efficient, low-cost solar cells. Adv. Mater. 29, 1606258 (2017).

    Article  Google Scholar 

  26. Raga, S. R., Jiang, Y., Ono, L. K. & Qi, Y. Application of methylamine gas in fabricating organic–inorganic hybrid perovskite solar cells. Energy Technol. 5, 1750–1761 (2017).

    Article  CAS  Google Scholar 

  27. Zhou, Y. & Padture, N. P. Gas-induced formation/transformation of organic–inorganic halide perovskites. ACS Energy Lett. 2, 2166–2176 (2017).

    Article  CAS  Google Scholar 

  28. Zhao, T. et al. Design rules for the broad application of fast ( < 1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Adv. 6, 27475 (2016).

    Article  CAS  Google Scholar 

  29. Singh, A., Chouhan, A. S. & Avasthi, S. Methylamine vapor exposure for improved morphology and stability of cesium-methylammonium lead halide. Preprint at https://arXiv.org/abs/1712.09068 (2017).

  30. Chen, H. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017).

    CAS  Google Scholar 

  31. Zhou, Y., Yang, M., Pang, S., Zhu, K. & Padture, N. P. Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J. Am. Chem. Soc. 138, 5535–5538 (2016).

    Article  CAS  Google Scholar 

  32. Ávila, J., Momblona, C., Boix, P. P., Sessolo, M. & Bolink, H. J. Vapor-deposited perovskites. The route to high-performance solar cell production?. Joule 1, 431–442 (2017).

    Article  Google Scholar 

  33. Leyden, M. R. et al. High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742 (2014).

    Article  CAS  Google Scholar 

  34. Remeika, M. & Qi, Y. Scalable solution coating of the absorber for perovskite solar cells. J. Energy Chem. 27, 1101–1110 (2018).

    Article  Google Scholar 

  35. Zhou, Y. & Zhu, K. Perovskite solar cells shine in the “Valley of the Sun”. ACS Energy Lett. 1, 64–67 (2016).

    Article  CAS  Google Scholar 

  36. Lee, J.-W. & Park, N.-G. Two-step deposition method for high-efficiency perovskite solar cells. MRS. Bull. 40, 654–659 (2015).

    Article  CAS  Google Scholar 

  37. Bengtsson, L. A., Stegemann, H., Holmberg, B. & Füllbier, H. The structure of room temperature molten polyiodides. Mol. Phys. 73, 283–296 (1991).

    Article  CAS  Google Scholar 

  38. Petrov, A. A. et al. A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts. Mater. Horiz. 4, 625–632 (2017).

    Article  CAS  Google Scholar 

  39. Wang, S., Jiang, Y., Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).

    Article  Google Scholar 

  40. Rakita, Y., Gupta, S., Cahen, D. & Hodes, G. Metal to halide perovskite (HaP): an alternative route to HaP coating, directly from Pb(0) or Sn(0) films. Chem. Mater. 29, 8620–8629 (2017).

    Article  CAS  Google Scholar 

  41. Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  42. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  43. Dong, Q. et al. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  44. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells. Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  Google Scholar 

  45. Nie, W. et al. The effect of light soaking on the lattice change and the impact towards long-term photo-stability in Cs doped FA-MAPbI3 mixed cation perovskite alloys. In 3rd International Conference on Perovskite Solar Cells and Optoelectronics (PSCO-2017) A02.02 (2017).

  46. Tang, Z. et al. Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183 (2017).

    Article  Google Scholar 

  47. Giordano, F. et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016).

    Article  CAS  Google Scholar 

  48. Correa Baena, J. P. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

    Article  CAS  Google Scholar 

  49. Anaraki, E. H. et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 3, 773–778 (2018).

    Article  Google Scholar 

  50. Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.A.B., A.A.P., A.Yu.G., S.A.F., E.A.G. and A.B.T. acknowledge financial support from the Ministry of Education and Science of the Russian Federation, Project Number: RFMEFI60716X0147 and JSC “Krasnoyarskaya HPP”. I.T, S. Kazaoui, S.A. and T.U. acknowledge the support of the New Energy Development Organization of Japan. I.T. and S. Kazaoui thank Hiroshi Tomiyasu, Eisuke Ito (CEREBA) and Tetsuo Tsutsui (Kyushu University) for assistance. I.T. expresses gratitude to Anna Pavlova for her support.

Author information

Authors and Affiliations

Authors

Contributions

I.T. conceived the idea of the present work in discussion with A.B.T. Fabrication and characterization of perovskite solar cells and films by the RP-MAGIC method were conducted by I.T., S. Kazaoui and A.B.T. The Pb/MAI interface modification method was developed by S. Kosar through overlapped evaporation. S.A. and T.U. contributed to experiment preparation. N.A.B. and A.Yu.G. developed the spray-assisted RP-MAGIC method. S.A.F. and A.A.P. measured the melting temperatures of polyiodides. E.A.G. measured Raman spectra. I.T., S. Kazaoui, A.B.T., E.A.G., M.K. and M.G. performed scientific evaluation of the data. The manuscript was written by I.T., E.A.G., S. Kazaoui, S. Kosar, A.B.T. and M.G. The project was planned, directed and supervised by I.T. and A.B.T. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Alexey B. Tarasov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supporting information

Supplementary text and Supplementary Figs. 1–16

Reporting Summary

Supplementary Video 1

Fabrication of large area MAPbI3 film on flexible PET/ITO substrate

Supplementary Video 2

Conversion of the Pb/MAI bilayer into MAPbI3 with a crystallite of iodine as iodine source

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkevych, I., Kazaoui, S., Belich, N.A. et al. Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nature Nanotech 14, 57–63 (2019). https://doi.org/10.1038/s41565-018-0304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0304-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing