Ultrafast dynamics in van der Waals heterostructures

Abstract

Van der Waals heterostructures are synthetic quantum materials composed of stacks of atomically thin two-dimensional (2D) layers. Because the electrons in the atomically thin 2D layers are exposed to layer-to-layer coupling, the properties of van der Waals heterostructures are defined not only by the constituent monolayers, but also by the interactions between the layers. Many fascinating electrical, optical and magnetic properties have recently been reported in different types of van der Waals heterostructures. In this Review, we focus on unique excited-state dynamics in transition metal dichalcogenide (TMDC) heterostructures. TMDC monolayers are the most widely studied 2D semiconductors, featuring prominent exciton states and accessibility to the valley degree of freedom. Many TMDC heterostructures are characterized by a staggered band alignment. This band alignment has profound effects on the evolution of the excited states in heterostructures, including ultrafast charge transfer between the layers, the formation of interlayer excitons, and the existence of long-lived spin and valley polarization in resident carriers. Here we review recent experimental and theoretical efforts to elucidate electron dynamics in TMDC heterostructures, extending from timescales of femtoseconds to microseconds, and comment on the relevance of these effects for potential applications in optoelectronic, valleytronic and spintronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Band alignment in vertical vdW heterostructures of TMDCs.
Fig. 2: Experimental studies of ultrafast charge transfer in vertical TMDC heterostructures.
Fig. 3: Theoretical concepts explaining the robust and ultrafast nature of charge transfer in TMDC heterostructures52.
Fig. 4: Dynamics of spin–valley information carriers in TMDC materials.
Fig. 5: Potential origin of intervalley scattering in WSe2/MoS2 heterostructures.
Fig. 6: Spin–valley transport in a vdW heterostructure.

References

  1. 1.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Chen, G. et al. Gate-tunable Mott insulator in trilayer graphene–boron nitride moiré superlattice. Preprint at https://arxiv.org/abs/1803.01985 (2018).

  8. 8.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  9. 9.

    Ye, Z. L. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  11. 11.

    Xu, X. D., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Komsa, H. P. & Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013).

    Article  Google Scholar 

  13. 13.

    Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article  Google Scholar 

  14. 14.

    Terrones, H., Lopez-Urias, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).

    Article  Google Scholar 

  15. 15.

    Stormer, H. L., Dingle, R., Gossard, A. C., Wiegmann, W. & Sturge, M. D. 2-dimensional electron-gas at a semiconductor–semiconductor interface. Solid State Commun. 29, 705–709 (1979).

    CAS  Article  Google Scholar 

  16. 16.

    Bellus, M. Z. et al. Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2, 31–36 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Ozcelik, V. O., Azadani, J. G., Yang, C., Koester, S. J. & Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).

    Article  Google Scholar 

  19. 19.

    Hong, X. P. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Wang, K. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10, 6612–6622 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Kozawa, D. et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett. 16, 4087–4093 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, C. X. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Mater. 4, 015026 (2017).

    Article  Google Scholar 

  23. 23.

    Debbichi, L., Eriksson, O. & Lebegue, S. Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Phys. Rev. B 89, 205311 (2014).

    Article  Google Scholar 

  24. 24.

    Zhang, J. F., Xie, W. Y., Zhao, J. J. & Zhang, S. B. Band alignment of two-dimensional lateral heterostructures. 2D Mater. 4, 015038 (2017).

    Article  Google Scholar 

  25. 25.

    Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Screening and many-body effects in two-dimensional crystals: monolayer MoS2. Phys. Rev. B 93, 235435 (2016).

    Article  Google Scholar 

  26. 26.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  Google Scholar 

  27. 27.

    Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4831–4837 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Ceballos, F., Bellus, M. Z., Chiu, H. Y. & Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Zhu, H. M. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Ji, Z. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 11, 12020–12026 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Chen, H. L. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Ceballos, F., Ju, M. G., Lane, S. D., Zeng, X. C. & Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 17, 1623–1628 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Pan, S. D., Ceballos, F., Bellus, M. Z., Zereshki, P. & Zhao, H. Ultrafast charge transfer between MoTe2 and MoS2 monolayers. 2D Mater. 4, 015033 (2017).

    Article  Google Scholar 

  35. 35.

    Xu, W. G. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Ceballos, F., Bellus, M. Z., Chiu, H. Y. & Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 17523–17528 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Li, Y. Y. et al. Ultrafast interlayer electron transfer in incommensurate transition metal dichalcogenide homobilayers. Nano Lett. 17, 6661–6666 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Rigosi, A. F., Hill, H. M., Li, Y. L., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 15, 5033–5038 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  Google Scholar 

  42. 42.

    Xu, W. S. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton energy transfer. Small 14, 1703727 (2018).

    Article  Google Scholar 

  43. 43.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  44. 44.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Zhu, X. Y. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Wang, H. et al. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nat. Commun. 7, 11504 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, J. et al. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv. Sci. 4, 1700086 (2017).

    Article  Google Scholar 

  48. 48.

    Long, R. & Prezhdo, O. V. Quantum coherence facilitates efficient charge separation at a MoS2/MoSe2 van der Waals junction. Nano Lett. 16, 1996–2003 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Li, L. Q., Long, R. & Prezhdo, O. V. Charge separation and recombination in two-dimensional MoS2/WS2: time-domain ab initio modeling. Chem. Mater. 29, 2466–2473 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Kang, J., Li, J. B., Li, S. S., Xia, J. B. & Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Tong, Q. J. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Wang, Y., Wang, Z., Yao, W., Liu, G. B. & Yu, H. Y. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    Article  Google Scholar 

  53. 53.

    Zheng, Q. J. et al. Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Jin, C. H. et al. On optical dipole moment and radiative recombination lifetime of excitons in WSe2. Adv. Funct. Mater. 27, 1601741 (2017).

    Article  Google Scholar 

  55. 55.

    Zhang, X. X., You, Y. M., Zhao, S. Y. F. & Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

    Article  Google Scholar 

  56. 56.

    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).

    Article  Google Scholar 

  57. 57.

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    Wang, Q. S. et al. Valley carrier dynamics in mono layer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 7, 11087–11093 (2013).

    CAS  Article  Google Scholar 

  61. 61.

    Hao, K. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12, 677–682 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2014).

    CAS  Article  Google Scholar 

  63. 63.

    Zhu, C. R. et al. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 90, 161302(R) (2014).

    Article  Google Scholar 

  64. 64.

    Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  65. 65.

    Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  Google Scholar 

  67. 67.

    Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302(R) (2014).

    Article  Google Scholar 

  68. 68.

    Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

    Article  Google Scholar 

  69. 69.

    Yu, H. Y., Liu, G. B., Gong, P., Xu, X. D. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    Maialle, M. Z., Silva, E. A. D. E. & Sham, L. J. Exciton spin dynamics in quantum-wells. Phys. Rev. B 47, 15776–15788 (1993).

    CAS  Article  Google Scholar 

  71. 71.

    Hao, K. et al. Trion valley coherence in monolayer semiconductors. 2D Mater. 4, 025105 (2017).

    Article  Google Scholar 

  72. 72.

    Volmer, F. et al. Intervalley dark trion states with spin lifetimes of 150 ns in WSe2. Phys. Rev. B 95, 235408 (2017).

    Article  Google Scholar 

  73. 73.

    Plechinger, G. et al. Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide. Nat. Commun. 7, 12715 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Zhang, X. X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotech. 12, 883–888 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    Jiang, C. Y. et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).

    Article  Google Scholar 

  76. 76.

    You, Y. M. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    CAS  Article  Google Scholar 

  77. 77.

    Chen, S., Goldstein, T., Taniguchi, T., Watanabe, K. & Yan, J. Coulomb-bound four- and five-particle valleytronic states in an atomically-thin semiconductor. Nat. Commun. 9, 3717 (2018).

    Article  Google Scholar 

  78. 78.

    Dey, P. et al. Gate-controlled spin–valley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Song, X. L., Xie, S. E., Kang, K., Park, J. & Sih, V. Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2. Nano Lett. 16, 5010–5014 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Hsu, W. T. et al. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 6, 8963 (2015).

    CAS  Article  Google Scholar 

  81. 81.

    Yang, L. Y. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad. Sci. USA 111, 6198–6202 (2014).

    CAS  Article  Google Scholar 

  83. 83.

    Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Article  Google Scholar 

  84. 84.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Article  Google Scholar 

  85. 85.

    Hsu, W. T. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).

    Article  Google Scholar 

  86. 86.

    Hanbicki, A. T. et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    Ciarrocchi, A. et al. Control of interlayer excitons in two-dimensional van der Waals heterostructures. Preprint at https://arxiv.org/abs/1803.06405 (2018).

  88. 88.

    Yu, H. Y., Wang, Y., Tong, Q. J., Xu, X. D. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Article  Google Scholar 

  89. 89.

    Yu, H. Y., Liu, B. L. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Article  Google Scholar 

  90. 90.

    Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    CAS  Article  Google Scholar 

  91. 91.

    Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Wu, F. C., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    Article  Google Scholar 

  93. 93.

    Yu, H. Y., Liu, G. B., Tang, J. J., Xu, X. D. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  94. 94.

    Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article  Google Scholar 

  95. 95.

    Jin, C. H. et al. Imaging of pure spin–valley diffusion current in WS2/WSe2 heterostructures. Science 360, 893–896 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Carvalho, B. R. et al. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).

    Article  Google Scholar 

  97. 97.

    Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    CAS  Article  Google Scholar 

  98. 98.

    He, K. L. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

E.Y.M. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. T.F.H. acknowledges support from the AMOS programme, Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, US Department of Energy under contract DE-AC02-76-SF00515 and from the Betty and Gordon Moore Foundation’s EPiQS Initiative through grant no. GBMF4545. O.K. acknowledges the support of the Rothschild Fellowship of Yad Hanadiv Fund, Israel, the Viterbi Fellowship of the Andrew and Erna Viterbi Department of Electrical Engineering, Technion, Israel, and the Betty and Gordon Moore Foundation’s EPiQS Initiative through grant no. GBMF4545. F.W. and E.C.R. acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract no. DE-AC02-05-CH11231 (van der Waals heterostructures programme, KCWF16). C.J. acknowledges support from the National Science Foundation EFRI programme (EFMA-1542741). E.C.R acknowledges support from the Department of Defense through the National Defense Science & Engineering Graduate (NDSEG) Fellowship programme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng Wang or Tony F. Heinz.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Ma, E.Y., Karni, O. et al. Ultrafast dynamics in van der Waals heterostructures. Nature Nanotech 13, 994–1003 (2018). https://doi.org/10.1038/s41565-018-0298-5

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research