Nuclear spins serve as sensitive probes in chemistry1 and materials science2 and are promising candidates for quantum information processing3,4,5,6. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors7,8 and spin liquids9 to quantum magnetism in nanomagnets10,11. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually4,5,12. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins2. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles13, and is harnessed for spin-based quantum information processing in quantum dots14 and doped silicon15,16,17. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron–nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

  2. 2.

    Slichter, C. P. Principles of Magnetic Resonance (Springer, Heidelberg, 1996).

  3. 3.

    Morley, G. W. et al. Quantum control of hybrid nuclear–electronic qubits. Nat. Mater. 12, 103–107 (2013).

  4. 4.

    Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

  5. 5.

    Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

  6. 6.

    Sigillito, A. J. et al. All-electric control of donor nuclear spin qubits in silicon. Nat. Nanotech. 12, 958–962 (2017).

  7. 7.

    Alloul, H., Ohno, T. & Mendels, P. 89Y NMR evidence for a Fermi-liquid behavior in YBa2Cu3O6+x. Phys. Rev. Lett. 63, 1700–1703 (1989).

  8. 8.

    Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).

  9. 9.

    Mendels, P. et al. Ga NMR study of the local susceptibility in kagomé-based SrCr8Ga4O19: pseudogap and paramagnetic defects. Phys. Rev. Lett. 85, 3496–3499 (2000).

  10. 10.

    Borsa, F., Lascialfari, A. & Furukawa, Y. Novel NMR and EPR Techniques (eds Dolinšek, J., Vilfan, M. & Žumer, S.) 297–349 (Springer, Heidelberg, 2006).

  11. 11.

    Micotti, E. et al. Local spin moment distribution in antiferromagnetic molecular rings probed by NMR. Phys. Rev. Lett. 97, 267204 (2006).

  12. 12.

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

  13. 13.

    Cassidy, M. C. et al. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat. Nanotech. 8, 363–368 (2013).

  14. 14.

    Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

  15. 15.

    McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Fast nuclear spin hyperpolarization of phosphorus in silicon. Phys. Rev. Lett. 102, 027601 (2009).

  16. 16.

    Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011).

  17. 17.

    Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nat. Mater. 9, 725–729 (2010).

  18. 18.

    Smet, J. H. et al. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 415, 281–286 (2002).

  19. 19.

    Lo, C. C. et al. All-electrical nuclear spin polarization of donors in silicon. Phys. Rev. Lett. 110, 057601 (2013).

  20. 20.

    Trowbridge, C. J. et al. Dynamic nuclear polarization from current-induced electron spin polarization. Phys. Rev. B 90, 085122 (2014).

  21. 21.

    Paul, W. et al. Control of the millisecond spin lifetime of an electrically probed atom. Nat. Phys. 13, 403–407 (2017).

  22. 22.

    Ting, Y. & Lew, H. Hyperfine structure of Cu63 and Cu65. Phys. Rev. 105, 581–588 (1957).

  23. 23.

    Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

  24. 24.

    Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

  25. 25.

    Yang, K. et al. Engineering the eigenstates of coupled spin-1/2 atoms on a surface. Phys. Rev. Lett. 119, 227206 (2017).

  26. 26.

    Willke, P. et al. Hyperfine interaction of individual atoms on a surface. Science 362, 336–339 (2018).

  27. 27.

    Otte, A. F. et al. The role of magnetic anisotropy in the Kondo effect. Nat. Phys. 4, 847–850 (2008).

  28. 28.

    McGarvey, B. R. The isotropic hyperfine interaction. J. Phys. Chem. 71, 51–66 (1967).

  29. 29.

    Loth, S. et al. Controlling the state of quantum spins with electric currents. Nat. Phys. 6, 340–344 (2010).

  30. 30.

    Reimer, J. A. Nuclear hyperpolarization in solids and the prospects for nuclear spintronics. Solid. State Nucl. Magn. Reson. 37, 3–12 (2010).

  31. 31.

    Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nat. Nanotech. 8, 561–564 (2013).

  32. 32.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

  33. 33.

    Heinrich, B. W., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nat. Phys. 9, 765–768 (2013).

Download references


We thank B. Melior for expert technical assistance. We acknowledge financial support from the Office of Naval Research. P.W., Y.B. and A.J.H. acknowledge support from Institute for Basic Science under IBS-R027-D1. P.W. acknowledges support from the Alexander von Humboldt Foundation. A.F. acknowledges CONICET (PIP11220150100327 and PUE-22920170100089CO). J.L.L. thanks the ETH Fellowship program for financial support. J.F.-R. thanks FCT, under the project PTDC/FIS-NAN/4662/2014.

Author information


  1. IBM Almaden Research Center, San Jose, CA, USA

    • Kai Yang
    • , Philip Willke
    • , Yujeong Bae
    •  & Christopher P. Lutz
  2. Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea

    • Philip Willke
    • , Yujeong Bae
    •  & Andreas J. Heinrich
  3. Department of Physics, Ewha Womans University, Seoul, Republic of Korea

    • Philip Willke
    • , Yujeong Bae
    •  & Andreas J. Heinrich
  4. Instituto de Modelado e Innovación Tecnológica (CONICET-UNNE) and Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina

    • Alejandro Ferrón
  5. QuantaLab, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal

    • Jose L. Lado
    •  & Joaquín Fernández-Rossier
  6. Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland

    • Jose L. Lado
  7. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK

    • Arzhang Ardavan
  8. Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig, Spain

    • Joaquín Fernández-Rossier


  1. Search for Kai Yang in:

  2. Search for Philip Willke in:

  3. Search for Yujeong Bae in:

  4. Search for Alejandro Ferrón in:

  5. Search for Jose L. Lado in:

  6. Search for Arzhang Ardavan in:

  7. Search for Joaquín Fernández-Rossier in:

  8. Search for Andreas J. Heinrich in:

  9. Search for Christopher P. Lutz in:


K.Y. and C.P.L. designed the experiment. K.Y., P.W. and Y.B. carried out the STM measurements. K.Y. and C.P.L. performed the analysis and developed the rate equation model. A.F., J.L.L. and J.F.-R. performed the DFT calculations. All the authors discussed the results and edited the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Andreas J. Heinrich or Christopher P. Lutz.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–6

About this article

Publication history






Further reading