Electron quantum metamaterials in van der Waals heterostructures

Abstract

In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques—for example in the unique colouring of butterfly wings—to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer structuring of electronic matter at scales at and below the electron wavelength, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures—such as mechanical pick-up/transfer assembly—atomic-scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length scales (such as the electron wavelength, screening length and electron mean free path). Yet electronic metamaterials promise far richer categories of behaviour than those found in conventional optical metamaterial technologies. This is because, unlike photons, which scarcely interact with each other, electrons in subwavelength-structured metamaterials are charged and strongly interact. As a result, an enormous variety of emergent phenomena can be expected and radically new classes of interacting quantum metamaterials designed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Wavefunction and Coulomb characteristics of electrons in vdW heterostructure quantum metamaterials.
Fig. 2: Wavefunction engineering in vdW heterostructures.
Fig. 3: Designing interactions in vertical vdW stacks.
Fig. 4: Strong correlations in interacting quantum metamaterials.

References

  1. 1.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Santos, D., Lopes, J. M., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    Article  Google Scholar 

  8. 8.

    Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  9. 9.

    Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article  Google Scholar 

  10. 10.

    Bistritzer, R. & MacDonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article  Google Scholar 

  11. 11.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Kindermann, M., Uchoa, B. & Miller, D. L. Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride. Phys. Rev. B 86, 115415 (2012).

    Article  Google Scholar 

  15. 15.

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. K. & Fal'ko, V. I. Generic miniband structure of graphene on a hexagonal substrate. Phys. Rev. B 87, 245408 (2013).

    Article  Google Scholar 

  17. 17.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109 (2010).

    Article  Google Scholar 

  22. 22.

    Kumar, R. K. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).

    Article  Google Scholar 

  23. 23.

    Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  25. 25.

    Morimoto, T. & Naoto, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  26. 26.

    Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  Google Scholar 

  27. 27.

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  28. 28.

    Mak, K. F., McGill, K., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. 11, 1027 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotech. 11, 421–425 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Lee, J., Wang, Z., Xie, H., Mak, K. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  34. 34.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotech. 7, 156–160 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Nandkishore, R. & Levitov, L. S. Spontaneously ordered states in bilayer graphene. Phys. Scr. T146, 014011 (2012).

    Article  Google Scholar 

  38. 38.

    Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

    Article  Google Scholar 

  39. 39.

    Bernevig, B. A. & Hughes T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, Princeton, 2013).

  40. 40.

    Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Vaezi, A. et al. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).

    Google Scholar 

  42. 42.

    Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  Google Scholar 

  44. 44.

    Li, J. et al. Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotech. 11, 1060–1065 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. 112, 10879–10883 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Qian, X., Liu, J. W., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Tang, S. J. et al. Quantum spin Hall state in monolayer 1Tʹ-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Fei, Z. Y. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Wu, S. F. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Sanchez-Yamagishi, J. D. et al. Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer. Nat. Nanotech. 12, 118–122 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Srivastava, A. & Imamoğlu, A. Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).

    Article  Google Scholar 

  53. 53.

    Zhou, J., Shan, W.-Y., Yao, W. & Xiao, D. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett. 115, 166803 (2015).

    Article  Google Scholar 

  54. 54.

    Song, J. C. W. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Kumar, A. et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).

    Article  Google Scholar 

  56. 56.

    Haldane, F. D. M. Berry curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotech. 11, 520–524 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Ma, W. et al. A chiral nanoassemblies-enabled strategy for simultaneously profiling surface glycoprotein and microRNA in living cells. Adv. Mater. 29, 1703410 (2017).

    Article  Google Scholar 

  59. 59.

    Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    CAS  Article  Google Scholar 

  60. 60.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  61. 61.

    Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nat. Nanotech. 13, 41–46 (2018).

    CAS  Article  Google Scholar 

  62. 62.

    Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotech. 13, 47–52 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    Barati, F. et al. Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotech. 12, 1134–1139 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. https://doi.org/10.1038/s41567-018-0123-y (2018).

    Article  Google Scholar 

  66. 66.

    Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotech. 10, 682–686 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article  Google Scholar 

  69. 69.

    Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    CAS  Article  Google Scholar 

  71. 71.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  72. 72.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  Google Scholar 

  73. 73.

    Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).

    CAS  Article  Google Scholar 

  74. 74.

    Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotech. 12, 31–35 (2017).

    Article  Google Scholar 

  75. 75.

    Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    CAS  Article  Google Scholar 

  76. 76.

    Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416 (1964).

    Article  Google Scholar 

  78. 78.

    Hamo, A. et al. Electron attraction mediated by Coulomb repulsion. Nature 535, 395–400 (2016).

    CAS  Article  Google Scholar 

  79. 79.

    Roesner, M. et al. Plasmonic superconductivity in layered materials. Preprint at https://arXiv.org/abs/1803.04576 (2018).

  80. 80.

    Fatemi, V. & Ruhman J. Synthesizing Coulombic superconductivity in van der Waals bilayers. Preprint at https://arxiv.org/abs/1804.04148 (2018).

  81. 81.

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    CAS  Article  Google Scholar 

  82. 82.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  84. 84.

    Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotech. 10, 270–276 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Xi, X., Berger, H., Forró, L., Shan, J. & Mak, K. F. Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys. Rev. Lett. 117, 106801 (2016).

    Article  Google Scholar 

  87. 87.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotech. 13, 544–568 (2018).

    CAS  Article  Google Scholar 

  89. 89.

    Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    CAS  Article  Google Scholar 

  90. 90.

    Wang, Z. et al. Strong interface-induced spin–orbit interaction in graphene on WS2. Nat. Commun. 6, 8339 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  Google Scholar 

  92. 92.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotech. 9, 808–818 (2014).

    CAS  Article  Google Scholar 

  93. 93.

    Wallbank, J. R. et al. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    CAS  Article  Google Scholar 

  94. 94.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science eaar4851 (2018)..

  95. 95.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science https://doi.org/10.1126/science.aar3617 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Preprint at https://arxiv.org/abs/1801.08188 (2018).

  97. 97.

    Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Preprint at https://arxiv.org/abs/1804.00028 (2018).

  98. 98.

    Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Preprint at https://arxiv.org/abs/1804.02038 (2018).

  99. 99.

    Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Article  Google Scholar 

  100. 100.

    Park, C. H., Yang, L., Son, Y. W., Cohen, M. L. & Louie, S. G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nat. Phys. 4, 213–217 (2008).

    CAS  Article  Google Scholar 

  101. 101.

    Forsythe, C. et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nanotech. 13, 566–571 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).

    CAS  Article  Google Scholar 

  103. 103.

    Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. https://doi.org/10.1038/s41567-018-0189–6 (2018).

    Article  Google Scholar 

  104. 104.

    Zhang, Y., Brink, J. V. D., Felser, C. & Yan, B. (2018). Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. Preprint at https://arxiv.org/abs/1804.11069.

  105. 105.

    Shi, L.-k. & Song, J. C. W. Berry curvature switch and magneto-electric effect in WTe2 monolayer. Preprint at https://arxiv.org/abs/1805.00939 (2018).

  106. 106.

    You, J. S., Fang, S., Xu, S. Y., Kaxiras, E. & Low, T. The Berry curvature dipole current in transition metal dichalcogenides family. Preprint at https://arxiv.org/abs/1805.02157 (2018).

  107. 107.

    Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).

    Article  Google Scholar 

  108. 108.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Article  Google Scholar 

  109. 109.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Article  Google Scholar 

  110. 110.

    Morell, E. S., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article  Google Scholar 

  111. 111.

    Chen, G. et al. Gate-tunable Mott insulator in trilayer graphene–boron nitride moiré superlattice. Preprint at https://arxiv.org/abs/1803.01985 (2018).

Download references

Acknowledgements

We thank V. Fatemi, F. Koppens, P. McEuen, J. Sanchez-Yamigishi and A. Young for discussions, as well as M. Grossnickle from QMO Labs for graphics assistance. J.C.W.S. acknowledges support from the Singapore National Research Foundation (NRF) under NRF fellowship award NRF-NRFF2016-05 and a Nanyang Technological University (NTU) start-up grant (NTU-SUG). N.M.G. is supported by the Air Force Office of Scientific Research Young Investigator Program (YIP) award no. FA9550-16-1-0216 and by the National Science Foundation Division of Materials Research CAREER award no. 1651247. N.M.G. also acknowledges support through a Cottrell Scholar Award, and through the Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar Award.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Justin C. W. Song or Nathaniel M. Gabor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J.C.W., Gabor, N.M. Electron quantum metamaterials in van der Waals heterostructures. Nature Nanotech 13, 986–993 (2018). https://doi.org/10.1038/s41565-018-0294-9

Download citation

Further reading