Letter | Published:

Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals

Nature Nanotechnologyvolume 13pages11431147 (2018) | Download Citation


Sensing the direction of sounds gives animals clear evolutionary advantage. For large animals, with an ear-to-ear spacing that exceeds audible sound wavelengths, directional sensing is simply accomplished by recognizing the intensity and time differences of a wave impinging on its two ears1. Recent research suggests that in smaller, subwavelength animals, angle sensing can instead rely on a coherent coupling of soundwaves between the two ears2,3,4. Inspired by this natural design, here we show a subwarvelength photodetection pixel that can measure both the intensity and incident angle of light. It relies on an electrical isolation and optical coupling of two closely spaced Si nanowires that support optical Mie resonances5,6,7. When these resonators scatter light into the same free-space optical modes, a non-Hermitian coupling results that affords highly sensitive angle determination. By straightforward photocurrent measurements, we can independently quantify the stored optical energy in each nanowire and relate the difference in the stored energy between the wires to the incident angle of a light wave. We exploit this effect to fabricate a subwavelength angle-sensitive pixel with angular sensitivity, δθ= 0.32°.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 15 November 2018

    In the version of this Letter originally published, Zongfu Yu was mistakenly not noted as being a corresponding author; this has now been corrected in all versions of the Letter.


  1. 1.

    Grothe, B., Pecka, M. & McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 90, 983–1012 (2010).

  2. 2.

    Chung, S.-H., Pettigrew, A. & Anson, M. Dynamics of the amphibian middle ear. Nature 272, 142–147 (1978).

  3. 3.

    Miles, R. N., Robert, D. & Hoy, R. R. Mechanically coupled ears for directional hearing in the parasitoid fly Ormiaochracea. J. Acoust. Soc. Am. 98, 3059–3070 (1995).

  4. 4.

    Römer, H. & Schmidt, A. K. D. Directional hearing in insects with internally coupled ears. Biol. Cybern. 110, 247–254 (2016).

  5. 5.

    Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).

  6. 6.

    Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

  7. 7.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, 2472 (2016).

  8. 8.

    Ng, R. et al. Light Field Photography with a Hand-Held Plenoptic Camera, Computer Science Tech Report 2005-02 (Stanford University, 2005).

  9. 9.

    Wang, A., Gill, P. & Molnar, A. Light field image sensors based on the Talbot effect. Appl. Opt. 48, 5897–5905 (2009).

  10. 10.

    Wang, A. & Molnar, A. A light-field image sensor in 180 nm CMOS. IEEE J. Solid-State Circuits 47, 257–271 (2012).

  11. 11.

    Wang, A., Gill, P. & Molnar, A. in Proceedings of the IEEE Custom Integrated Circuits Conference 371–374 (IEEE, New York, 2009).

  12. 12.

    Sivaramakrishnan, S., Wang, A., Gill, P. R. & Molnar, A. in Proceedings of the 2011 IEEE International Electronic Devices Meeting 191–194 (IEEE, New York, 2011).

  13. 13.

    Pollack, G. S. Sensory cues for sound localization in the cricket Teleogryllus oceanicus: interaural difference in response strength versus interaural latency difference. J. Comp. Physiol. A 189, 143–151 (2003).

  14. 14.

    Christensen-Dalsgaard, J. & Manley, G. A. Directionality of the lizard ear. J. Exp. Biol. 208, 1209–1217 (2005).

  15. 15.

    Christensen-Dalsgaard, J., Tang, Y. & Carr, C. E. Binaural processing by the gecko auditory periphery. J. Neurophysiol. 105, 1992–2004 (2011).

  16. 16.

    Vossen, C., Christensen-Dalsgaard, J. & van Hemmen, J. L. Analytical model of internally coupled ears. J. Acoust. Soc. Am. 128, 909–918 (2010).

  17. 17.

    Vedurmudi, A. P. et al. How internally coupled ears generate temporal and amplitude cues for sound localization. Phys. Rev. Lett. 116, 28101 (2016).

  18. 18.

    Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

  19. 19.

    Verslegers, L., Yu, Z., Catrysse, P. B. & Fan, S. Temporal coupled-mode theory for resonant apertures. J. Opt. Soc. Am. B 27, 1947–1956 (2010).

  20. 20.

    Verslegers, L., Yu, Z., Ruan, Z., Catrysse, P. B. & Fan, S. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. Phys. Rev. Lett. 108, 83902 (2012).

  21. 21.

    Scully, M. O. Collective Lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601 (2009).

  22. 22.

    Zhang, S. et al. Anti-Hermitian plasmon coupling of an array of gold thin-film antennas for controlling light at the nanoscale. Phys. Rev. Lett. 109, 193902 (2012).

  23. 23.

    Lyuboshitz, V. L. Resonance interaction between two identical dipole emitters. Sov. Phys. J. Exp.Theor. Phys. 26, 937–942 (1968).

  24. 24.

    Brönstrup, G. et al. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4, 7113–7122 (2010).

  25. 25.

    Cao, L., Fan, P. & Brongersma, M. L. Optical coupling of deep-subwavelength semiconductor nanowires. Nano. Lett. 11, 1463–1468 (2011).

  26. 26.

    Zhou, M., Shi, L., Zi, J. & Yu, Z. Extraordinarily large optical cross section for localized single nanoresonator. Phys. Rev. Lett. 115, 23903 (2015).

  27. 27.

    Besl, P. J. Active, optical range imaging sensors. Mach. Vis. Appl. 1, 127–152 (1988).

  28. 28.

    Blais, F. Review of 20 years of range sensor development. J. Electron. Imaging 13, 231–240 (2004).

  29. 29.

    Semiconductors Compenents Industries. VITA 25K Image Sensor Data Sheet NOIV1SN025KA, http://www.onsemi.com/pub/Collateral/NOIV1SN025KA-D.PDF (2016).

Download references


The work at the University of Wisconsin was funded by the Office of Naval Research (N00014-14-1-0300). The work at Stanford was supported by a Multi University Research Initiative (MURIs FA9550-14-1-0389) and an individual investigator grant (FA9550-17-1-0331) from the AFOSR.

Author information


  1. Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, USA

    • Soongyu Yi
    • , Ming Zhou
    • , Zongfu Yu
    •  & Nader Behdad
  2. Geballe Laboratory for Advanced Materials, Stanford, CA, USA

    • Pengyu Fan
    • , Dianmin Lin
    •  & Mark Brongersma
  3. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    • Dianmin Lin
    •  & Shanhui Fan
  4. Ginzton Laboratory, Stanford University, Stanford, CA, USA

    • Ken Xingze Wang
    •  & Shanhui Fan


  1. Search for Soongyu Yi in:

  2. Search for Ming Zhou in:

  3. Search for Zongfu Yu in:

  4. Search for Pengyu Fan in:

  5. Search for Nader Behdad in:

  6. Search for Dianmin Lin in:

  7. Search for Ken Xingze Wang in:

  8. Search for Shanhui Fan in:

  9. Search for Mark Brongersma in:


M.B. and Z.Y. directed the research. S.Y., M.Z., P.F. and D.L. performed the experiments. S.Y. and K.X.W. performed the simulations. M.Z. developed the analytical theory. All authors were involved in analysing the data and writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mark Brongersma.

Supplementary information

  1. Supplementary Information

    Supplementary Sections 1–16; Supplementary Figs. 1–24

About this article

Publication history