Oscillations, travelling fronts and patterns in a supramolecular system

Abstract

Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport1. In vivo and in vitro size oscillations of individual microtubules2,3 (dynamic instabilities) and collective oscillations4 have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems5. Here we describe an artificial supramolecular polymer made of a perylene diimide derivative that displays oscillations, travelling fronts and centimetre-scale self-organized patterns when pushed far from equilibrium by chemical fuels. Oscillations arise from a positive feedback due to nucleation–elongation–fragmentation, and a negative feedback due to size-dependent depolymerization. Travelling fronts and patterns form due to self-assembly induced density differences that cause system-wide convection. In our system, the species responsible for the nonlinear dynamics and those that self-assemble are one and the same. In contrast, other reported oscillating assemblies formed by vesicles6, micelles7 or particles8 rely on the combination of a known chemical oscillator and a stimuli-responsive system, either by communication through the solvent (for example, by changing pH7,8,9), or by anchoring one of the species covalently (for example, a Belousov–Zhabotinsky catalyst6,10). The design of self-oscillating supramolecular polymers and large-scale dissipative structures brings us closer to the creation of more life-like materials11 that respond to external stimuli similarly to living cells, or to creating artificial autonomous chemical robots12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Kinetics of redox-fuelled PDI assembly and disassembly.
Fig. 2: Supramolecular oscillations.
Fig. 3: Supramolecular oscillator model.
Fig. 4: Supramolecular travelling fronts and patterns.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2002).

  2. 2.

    Valiron, O., Caudron, N. & Job, D. Microtubule dynamics. Cell. Mol. Life Sci. 58, 2069–2084 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Mandelkow, E.-M. & Mandelkow, E. Microtubule oscillations. Cell Motil. Cytoskeleton 22, 235–244 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    Houchmandzadeh, B. & Vallade, M. Collective oscillations in microtubule growth. Phys. Rev. E 53, 6320–6324 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    Mandelkow, E., Mandelkow, E. M., Hotani, H., Hess, B. & Muller, S. C. Spatial patterns from oscillating microtubules. Science 246, 1291–1293 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    Tamate, R., Ueki, T., Shibayama, M. & Yoshida, R. Autonomous unimer–vesicle oscillation by totally synthetic diblock copolymers: effect of block length and polymer concentration on spatio-temporal structures. Soft Matter 13, 4559–4568 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Lagzi, I., Wang, D., Kowalczyk, B. & Grzybowski, B. A. Vesicle-to-micelle oscillations and spatial patterns. Langmuir 26, 13770–13772 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Lagzi, I., Kowalczyk, B., Wang, D. & Grzybowski, B. A. Nanoparticle oscillations and fronts. Angew. Chem. Int. Ed. 49, 8616–8619 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, G. et al. The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator. Colloids Surf. A 529, 808–814 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Yoshida, R. Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv. Mater. 22, 3463–3483 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotech. 11, 585–592 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Hess, H. & Ross, J. L. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570–5587 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protocols 11, 252–272 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Kondepudi, D. K. & Sabanayagam, C. Secondary nucleation that leads to chiral symmetry breaking in stirred crystallization. Chem. Phys. Lett. 217, 364–368 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Ulery, B. D., Nair, L. S. & Laurencin, C. T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49, 832–864 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Scott, S. K. Oscillations, Waves, and Chaos in Chemical Kinetics (Oxford Univ. Press, Oxford, 1994).

  19. 19.

    Sept, D., Limbach, H. J., Bolterauer, H. & Tuszynski, J. A. A chemical kinetics model for microtubule oscillations. J. Theor. Biol. 197, 77–88 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Lange, G., Mandelkow, E.-M., Jagla, A. & Mandelkow, E. Tubulin oligomers and microtubule oscillations. Eur. J. Biochem. 178, 61–69 (1988).

    CAS  Article  Google Scholar 

  21. 21.

    Cohen, S. I. A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).

    Article  Google Scholar 

  22. 22.

    Pojman, J. A. & Epstein, I. R. Convective effects on chemical waves. 1. Mechanisms and stability criteria. J. Phys. Chem. 94, 4966–4972 (1990).

    CAS  Article  Google Scholar 

  23. 23.

    Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford Univ. Press, Oxford, 1998).

  24. 24.

    Nagypal, I., Bazsa, G. & Epstein, I. R. Gravity-induced anisotropies in chemical waves. J. Am. Chem. Soc. 108, 3635–3640 (1986).

    CAS  Article  Google Scholar 

  25. 25.

    Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Mishra, A. et al. Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization. Nat. Commun. 9, 1295 (2018).

    Article  Google Scholar 

  28. 28.

    Jalani, K., Dhiman, S., Jain, A. & George, S. J. Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response. Chem. Sci 8, 6030–6036 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Scott, S. K. Chemical Chaos (Clarendon, Oxford, 1993).

  31. 31.

    Hammele, M. & Zimmermann, W. Modeling oscillatory microtubule polymerization. Phys. Rev. E 67, 021903 (2003).

    Article  Google Scholar 

  32. 32.

    Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems (Wiley, Hoboken, 1977).

  33. 33.

    Zhang, Y., Tsitkov, S. & Hess, H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat. Catal. 1, 276–281 (2018).

    Article  Google Scholar 

  34. 34.

    Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotech. 13, 304–308 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Region Alsace, University of Strasbourg Institute for Advanced Study (USIAS), LabEx grant ‘Suproscill’ (CSC-THE-17) and ERC-2017-STG ‘Life-Cycle’ (757910). M.S. acknowledges an STSM from the CMST COST Action CM1304 Emergence and Evolution of Complex Chemical Systems. We acknowledge T. Ebbesen, C. Genet and M. Seidel for help with the IR-SLS.

Author information

Affiliations

Authors

Contributions

J.L.-I. and T.M.H. designed and performed the experiments, and analysed the data. J.L.-I. performed the synthesis. A.T. performed the static and dynamic light scattering experiments. A.T. and T.A. developed the IR-SLS experiments and interpreted the results. J.L.-I., A.T. and T.A. carried out the IR-SLS experiments. M.S. and T.M.H. performed the modelling and interpretation of the results. J.L.-I. and T.M.H. wrote the paper. All the authors discussed the results and commented on the manuscript. T.M.H. conceived the overall project and supervised the research.

Corresponding author

Correspondence to Thomas M. Hermans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

41565_2018_270_MOESM2_ESM.mp4

Supramolecular oscillations in a semi-batch reactor

41565_2018_270_MOESM3_ESM.mp4

Propagating front of supramolecular assemblies

41565_2018_270_MOESM4_ESM.mp4

The propagating front induces large scale in-plane convection

41565_2018_270_MOESM5_ESM.mp4

Control experiment. Seeded front versus non-seeded region

41565_2018_270_MOESM6_ESM.avi

An outward propagating oxidation front induces flow-alignment of PDIassem

Supplementary Information

Supplementary Sections 1–7 and Supplementary Figures 1–17

Supplementary Video 1

Supramolecular oscillations in a semi-batch reactor

Supplementary Video 2

Propagating front of supramolecular assemblies

Supplementary Video 3

The propagating front induces large scale in-plane convection

Supplementary Video 4

Control experiment. Seeded front versus non-seeded region

Supplementary Video 5

An outward propagating oxidation front induces flow-alignment of PDIassem

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leira-Iglesias, J., Tassoni, A., Adachi, T. et al. Oscillations, travelling fronts and patterns in a supramolecular system. Nature Nanotech 13, 1021–1027 (2018). https://doi.org/10.1038/s41565-018-0270-4

Download citation

Further reading