Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet


Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Measurement of TA and TM.
Fig. 2: SOTs and DMI.
Fig. 3: Accurate modelling of the temperature and current dependence of vDW.
Fig. 4: Stray-field versus DMI skyrmions.
Fig. 5: Room-temperature-stable ferrimagnetic DMI skyrmions.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotech. 10, 195–198 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article  Google Scholar 

  5. 5.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotech. 10, 221–226 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 15005 (2018).

    Article  Google Scholar 

  12. 12.

    Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

    Article  Google Scholar 

  13. 13.

    Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016).

    Article  Google Scholar 

  14. 14.

    Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin–orbit torques. Phys. Rev. Lett. 117, 87203 (2016).

    Article  Google Scholar 

  15. 15.

    Cheng, R. & Niu, Q. Dynamics of antiferromagnets driven by spin current. Phys. Rev. B 89, 81105 (2014).

    Article  Google Scholar 

  16. 16.

    Hirata, Y. et al. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Phys. Rev. B 97, 220403(R) (2018).

    Article  Google Scholar 

  17. 17.

    Kim, S. K., Tchernyshyov, O. & Tserkovnyak, Y. Thermophoresis of an antiferromagnetic soliton. Phys. Rev. B 92, 20402 (2015).

    Article  Google Scholar 

  18. 18.

    Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article  Google Scholar 

  20. 20.

    Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Thiaville, A., Rohart, S., JuéÉ., CrosV. & FertA.. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  22. 22.

    Martinez, E., Emori, S., Perez, N., Torres, L. & Beach, G. S. D. Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis. J. Appl. Phys. 115, 213909 (2014).

    Article  Google Scholar 

  23. 23.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Wangsness, R. K. Sublattice effects in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).

    CAS  Article  Google Scholar 

  25. 25.

    Tchernyshyov, O. Conserved momenta of a ferromagnetic soliton. Ann. Phys. 363, 98–113 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article  Google Scholar 

  29. 29.

    Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

    Article  Google Scholar 

  30. 30.

    Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Ueda, K., Mann, M., Pai, C.-F., Tan, A.-J. & Beach, G. S. D. Spin-orbit torques in Ta/TbxCo100–x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Appl. Phys. Lett. 109, 232403 (2016).

    Article  Google Scholar 

  32. 32.

    Seung Ham, W. et al. Temperature dependence of spin–orbit effective fields in Pt/GdFeCo bilayers. Appl. Phys. Lett. 110, 242405 (2017).

    Article  Google Scholar 

  33. 33.

    Roschewsky, N., Lambert, C.-H. H. & Salahuddin, S. Spin–orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 64406 (2017).

    Article  Google Scholar 

  34. 34.

    Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

    Article  Google Scholar 

  35. 35.

    Je, S.-G. G. et al. Spin–orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 62401 (2018).

    Article  Google Scholar 

  36. 36.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Tono, T. et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Express 8, 73001 (2015).

    Article  Google Scholar 

  39. 39.

    Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Article  Google Scholar 

  40. 40.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 117203 (2015).

    Article  Google Scholar 

  41. 41.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Bogdanov, A. N. Magnetic domains. The analysis of magnetic microstructures. Low Temp. Phys. 25, 151–152 (1999).

    CAS  Article  Google Scholar 

  43. 43.

    Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, eaat0415 (2018).

    Article  Google Scholar 

  45. 45.

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotech. 12, 1040–1044 (2017).

    Article  Google Scholar 

  47. 47.

    Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano. Lett. 17, 2703–2712 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Fast Micromagnetic Simulator for Computations on CPU and Graphics Processing Unit (MicroMagnum, 2013);

  50. 50.

    Bauer, U., Emori, S. & Beach, G. S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotech. 8, 411–416 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Hansen, P. & Heitmann, H. Media for erasable magnetooptic recording. IEEE Trans. Magn. 25, 4390–4404 (1989).

    CAS  Article  Google Scholar 

  52. 52.

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    CAS  Article  Google Scholar 

  53. 53.

    Büttner, F. in Holographic Materials and Optical Systems (eds Neydenova, I., Babeva, T & Nazarova, D.) Ch. 10 (InTech, London, 2017).

  54. 54.

    Pfau, B. & Eisebitt, S. in Synchrotron Light Sources and Free-Electron Lasers (eds Jaeschke, E., Khan, S., Schneider, J.R. Hastings, J.B.) 1093–1133 (Heidelberg, Springer, 2016).

  55. 55.

    Guehrs, E. et al. Wavefield back-propagation in high-resolution X-ray holography with a movable field of view. Opt. Express 18, 18922–18931 (2010).

    Article  Google Scholar 

Download references


Work at MIT was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0012371 (X-ray holography materials growth, device fabrication and imaging), and by the DARPA TEE program (current-induced dynamics experiments, modelling and skyrmion size analysis). Devices were fabricated using equipment in the MIT Microsystems Technology Laboratory and the MIT Nanostructures Laboratory. The authors thank L. Liu for use of the ion milling equipment. L.C. acknowledges financial support from the NSF Graduate Research Fellowship Program and from the GEM Consortium. F.B. thanks the DFG for funding under grant no. BU 3297/1-1. The authors thank C. Avci, A.J. Tan and M. Huang for discussions.

Author information




G.S.D.B. proposed and supervised the study. L.C., M.M., F.B. and G.S.D.B. designed the experiments. L.C. and M.M. designed the measurement apparatus and performed domain wall experiments. C.M. and D.B. designed the high-voltage pulse generator. K.U. optimized the GdCo film growth and deposited the samples. L.C. and M.M. performed lithographic steps for the domain wall tracks and F.B., C.M.G., A.C., D.E. and M.S. prepared and characterized the holography samples. F.B., B.P., C.M.G., P.H., A.C. and C.K. performed the X-ray holographic imaging with the assistance of K.B., and with input and supervision from S.E. P.H. reconstructed the holographic images. F.B. performed all the micromagnetic simulations and analytical calculations. All of the authors participated in the discussion and interpreted the results. L.C., F.B., M.M. and G.S.D.B. drafted the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11

Supplementary Video 1

Imaging of skyrmions during increasing field sweep depicted in Fig. 4c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caretta, L., Mann, M., Büttner, F. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nature Nanotech 13, 1154–1160 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research