Abstract

Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

  2. 2.

    Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotech. 10, 195–198 (2015).

  3. 3.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

  4. 4.

    Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

  5. 5.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

  6. 6.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

  7. 7.

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

  8. 8.

    Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

  9. 9.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotech. 10, 221–226 (2015).

  10. 10.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  11. 11.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 15005 (2018).

  12. 12.

    Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

  13. 13.

    Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016).

  14. 14.

    Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin–orbit torques. Phys. Rev. Lett. 117, 87203 (2016).

  15. 15.

    Cheng, R. & Niu, Q. Dynamics of antiferromagnets driven by spin current. Phys. Rev. B 89, 81105 (2014).

  16. 16.

    Hirata, Y. et al. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Phys. Rev. B 97, 220403(R) (2018).

  17. 17.

    Kim, S. K., Tchernyshyov, O. & Tserkovnyak, Y. Thermophoresis of an antiferromagnetic soliton. Phys. Rev. B 92, 20402 (2015).

  18. 18.

    Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

  19. 19.

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

  20. 20.

    Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

  21. 21.

    Thiaville, A., Rohart, S., JuéÉ., CrosV. & FertA.. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

  22. 22.

    Martinez, E., Emori, S., Perez, N., Torres, L. & Beach, G. S. D. Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis. J. Appl. Phys. 115, 213909 (2014).

  23. 23.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

  24. 24.

    Wangsness, R. K. Sublattice effects in magnetic resonance. Phys. Rev. 91, 1085–1091 (1953).

  25. 25.

    Tchernyshyov, O. Conserved momenta of a ferromagnetic soliton. Ann. Phys. 363, 98–113 (2015).

  26. 26.

    Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

  27. 27.

    Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

  28. 28.

    Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

  29. 29.

    Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

  30. 30.

    Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

  31. 31.

    Ueda, K., Mann, M., Pai, C.-F., Tan, A.-J. & Beach, G. S. D. Spin-orbit torques in Ta/TbxCo100–x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Appl. Phys. Lett. 109, 232403 (2016).

  32. 32.

    Seung Ham, W. et al. Temperature dependence of spin–orbit effective fields in Pt/GdFeCo bilayers. Appl. Phys. Lett. 110, 242405 (2017).

  33. 33.

    Roschewsky, N., Lambert, C.-H. H. & Salahuddin, S. Spin–orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 64406 (2017).

  34. 34.

    Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

  35. 35.

    Je, S.-G. G. et al. Spin–orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 62401 (2018).

  36. 36.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

  37. 37.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

  38. 38.

    Tono, T. et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Express 8, 73001 (2015).

  39. 39.

    Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

  40. 40.

    Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 117203 (2015).

  41. 41.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

  42. 42.

    Bogdanov, A. N. Magnetic domains. The analysis of magnetic microstructures. Low Temp. Phys. 25, 151–152 (1999).

  43. 43.

    Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nat. Commun. 9, 2712 (2018).

  44. 44.

    Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, eaat0415 (2018).

  45. 45.

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

  46. 46.

    Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotech. 12, 1040–1044 (2017).

  47. 47.

    Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

  48. 48.

    Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano. Lett. 17, 2703–2712 (2017).

  49. 49.

    Fast Micromagnetic Simulator for Computations on CPU and Graphics Processing Unit (MicroMagnum, 2013); http://micromagnum.informatik.uni-hamburg.de/.

  50. 50.

    Bauer, U., Emori, S. & Beach, G. S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotech. 8, 411–416 (2013).

  51. 51.

    Hansen, P. & Heitmann, H. Media for erasable magnetooptic recording. IEEE Trans. Magn. 25, 4390–4404 (1989).

  52. 52.

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

  53. 53.

    Büttner, F. in Holographic Materials and Optical Systems (eds Neydenova, I., Babeva, T & Nazarova, D.) Ch. 10 (InTech, London, 2017).

  54. 54.

    Pfau, B. & Eisebitt, S. in Synchrotron Light Sources and Free-Electron Lasers (eds Jaeschke, E., Khan, S., Schneider, J.R. Hastings, J.B.) 1093–1133 (Heidelberg, Springer, 2016).

  55. 55.

    Guehrs, E. et al. Wavefield back-propagation in high-resolution X-ray holography with a movable field of view. Opt. Express 18, 18922–18931 (2010).

Download references

Acknowledgements

Work at MIT was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0012371 (X-ray holography materials growth, device fabrication and imaging), and by the DARPA TEE program (current-induced dynamics experiments, modelling and skyrmion size analysis). Devices were fabricated using equipment in the MIT Microsystems Technology Laboratory and the MIT Nanostructures Laboratory. The authors thank L. Liu for use of the ion milling equipment. L.C. acknowledges financial support from the NSF Graduate Research Fellowship Program and from the GEM Consortium. F.B. thanks the DFG for funding under grant no. BU 3297/1-1. The authors thank C. Avci, A.J. Tan and M. Huang for discussions.

Author information

Author notes

  1. These authors contributed equally: Lucas Caretta, Maxwell Mann, Felix Büttner.

Affiliations

  1. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Lucas Caretta
    • , Maxwell Mann
    • , Felix Büttner
    • , Kohei Ueda
    • , Alexandra Churikova
    • , Colin Marcus
    • , David Bono
    •  & Geoffrey S. D. Beach
  2. Max-Born-Institut, Berlin, Germany

    • Bastian Pfau
    • , Christian M. Günther
    • , Piet Hessing
    • , Christopher Klose
    • , Michael Schneider
    • , Dieter Engel
    •  & Stefan Eisebitt
  3. Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany

    • Christian M. Günther
    •  & Stefan Eisebitt
  4. Deutsches Elektronen-Synchrotron (DESY), FS-PE, Hamburg, Germany

    • Kai Bagschik

Authors

  1. Search for Lucas Caretta in:

  2. Search for Maxwell Mann in:

  3. Search for Felix Büttner in:

  4. Search for Kohei Ueda in:

  5. Search for Bastian Pfau in:

  6. Search for Christian M. Günther in:

  7. Search for Piet Hessing in:

  8. Search for Alexandra Churikova in:

  9. Search for Christopher Klose in:

  10. Search for Michael Schneider in:

  11. Search for Dieter Engel in:

  12. Search for Colin Marcus in:

  13. Search for David Bono in:

  14. Search for Kai Bagschik in:

  15. Search for Stefan Eisebitt in:

  16. Search for Geoffrey S. D. Beach in:

Contributions

G.S.D.B. proposed and supervised the study. L.C., M.M., F.B. and G.S.D.B. designed the experiments. L.C. and M.M. designed the measurement apparatus and performed domain wall experiments. C.M. and D.B. designed the high-voltage pulse generator. K.U. optimized the GdCo film growth and deposited the samples. L.C. and M.M. performed lithographic steps for the domain wall tracks and F.B., C.M.G., A.C., D.E. and M.S. prepared and characterized the holography samples. F.B., B.P., C.M.G., P.H., A.C. and C.K. performed the X-ray holographic imaging with the assistance of K.B., and with input and supervision from S.E. P.H. reconstructed the holographic images. F.B. performed all the micromagnetic simulations and analytical calculations. All of the authors participated in the discussion and interpreted the results. L.C., F.B., M.M. and G.S.D.B. drafted the manuscript. All authors commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–11

  2. Supplementary Video 1

    Imaging of skyrmions during increasing field sweep depicted in Fig. 4c.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0255-3