Review Article | Published:

Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis

Nature Nanotechnologyvolume 13pages890899 (2018) | Download Citation


Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. The progress and studies of these hybrid systems is the focus of this forward-looking perspective. In this Review, we discuss how enzymes have been interfaced with synthetic materials and employed for semi-artificial fuel production. In parallel, we examine how more complex living cellular systems can be recruited for in vivo fuel and chemical production in an approach where inorganic nanostructures are hybridized with photosynthetic and non-photosynthetic microorganisms. Side-by-side comparisons reveal strengths and limitations of enzyme- and microorganism-based hybrid systems, and how lessons extracted from studying enzyme hybrids can be applied to investigations of microorganism-hybrid devices. We conclude by putting semi-artificial photosynthesis in the context of its own ambitions and discuss how it can help address the grand challenges facing artificial systems for the efficient generation of solar fuels and chemicals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

  2. 2.

    Williams, P. Jl. B. & Laurens, L. M. L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554–590 (2010).

  3. 3.

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

  4. 4.

    Vogt, L., Vinyard, D. J., Khan, S. & Brudvig, G. W. Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 25, 152–158 (2015).

  5. 5.

    Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

  6. 6.

    Gray, H. B. & Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).

  7. 7.

    Wang, B., Wang, J., Zhang, W. & Meldrum, D. R. Application of synthetic biology in cyanobacteria and algae. Front. Microbiol. 3, 1–15 (2012).

  8. 8.

    McNeely, K., Xu, Y., Bennette, N., Bryant, D. A. & Dismukes, G. C. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol. 76, 5032–5038 (2010).

  9. 9.

    Zhu, X.-G., Long, S. P. & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

  10. 10.

    Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

  11. 11.

    Michel, H. The nonsense of biofuels. Angew. Chem. Int. Ed. 51, 2516–2518 (2012).

  12. 12.

    Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

  13. 13.

    Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

  14. 14.

    Zhou, X. et al. Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett. 1, 764–770 (2016).

  15. 15.

    Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

  16. 16.

    Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

  17. 17.

    Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

  18. 18.

    Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

  19. 19.

    Rosen, B. A. et al. Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

  20. 20.

    Gong, M. et al. Supramolecular porphyrin cages assembled at molecular–materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 3, 1032–1040 (2017).

  21. 21.

    Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

  22. 22.

    Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

  23. 23.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

  24. 24.

    McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of bipolar membranes for maintaining steady‐state ph gradients in membrane‐supported, solar‐driven water splitting. ChemSusChem 7, 3021–3027 (2014).

  25. 25.

    Sakimoto, K. K., Kornienko, N. & Yang, P. Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 50, 476–481 (2017).

  26. 26.

    Kumar, A. et al. The ins and outs of microorganism–electrode electron transfer reactions. Nat. Rev. Chem. 1, 0024 (2017).

  27. 27.

    Breuer, M., Rosso, K. M., Blumberger, J. & Butt, J. N. Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015).

  28. 28.

    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

  29. 29.

    Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

  30. 30.

    Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

  31. 31.

    Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

  32. 32.

    Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium–tin oxide electrode. J. Am. Chem. Soc. 134, 8332–8335 (2012).

  33. 33.

    Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

  34. 34.

    Vittadello, M. et al. Photoelectron generation by photosystem II core complexes tethered to gold surfaces. ChemSusChem 3, 471–475 (2010).

  35. 35.

    Sokol, K. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698–3709 (2016).

  36. 36.

    Badura, A. et al. Photo‐induced electron transfer between photosystem 2 via cross‐linked redox hydrogels. Electroanalysis 20, 1043–1047 (2008).

  37. 37.

    Cai, P. et al. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale 7, 10908–10911 (2015).

  38. 38.

    Terasaki, N. et al. Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516, 2553–2557 (2008).

  39. 39.

    Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 135, 10610–10613 (2013).

  40. 40.

    Nam, D. H. et al. Solar water splitting with a hydrogenase integrated in photoelectrochemical tandem cells. Angew. Chem. Int. Ed. 57, 10595–10599 (2018).

  41. 41.

    Wang, W. et al. Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chem. Comm. 51, 16952–16955 (2015).

  42. 42.

    Wang, W., Chen, J., Li, C. & Tian, W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat. Commun. 5, 4647 (2014).

  43. 43.

    Kothe, T. et al. Combination of a photosystem 1‐based photocathode and a photosystem 2‐based photoanode to a z‐scheme mimic for biophotovoltaic applications. Angew. Chem. Int. Ed. 52, 14233–14236 (2013).

  44. 44.

    Hamidi, H. et al. Photocurrent generation from thylakoid membranes on osmium‐redox‐polymer‐modified electrodes. ChemSusChem 8, 990–993 (2015).

  45. 45.

    Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6, 1891–1900 (2013).

  46. 46.

    Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7, 12552 (2016).

  47. 47.

    Rasmussen, M. & Minteer, S. D. Investigating the mechanism of thylakoid direct electron transfer for photocurrent generation. Electrochim. Acta 126, 68–73 (2014).

  48. 48.

    Zhang, J. Z. et al. Photoelectrochemistry of Photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

  49. 49.

    McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).

  50. 50.

    Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

  51. 51.

    Darus, L., Ledezma, P., Keller, J. & Freguia, S. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynth. Res. 127, 347–354 (2016).

  52. 52.

    Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).

  53. 53.

    Bhardwaj, R., Pan, R. L. & Gross, E. L. Solar energy conversion by chloroplast photoelectrochemical cells. Nature 289, 396–398 (1981).

  54. 54.

    Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883–12888 (2014).

  55. 55.

    He, Z. & Mansfeld, F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2, 215–219 (2009).

  56. 56.

    Millo, D. et al. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface‐enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed. 50, 2625–2627 (2011).

  57. 57.

    Busalmen, J. P., Esteve‐Núñez, A., Berná, A. & Feliu, J. M. C‐type cytochromes wire electricity‐producing bacteria to electrodes. Angew. Chem. Int. Ed. 47, 4874–4877 (2008).

  58. 58.

    Jiang, X. et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl Acad. Sci. USA 107, 16806–16810 (2010).

  59. 59.

    Ding, M. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

  60. 60.

    Vinyard, D. J., Gimpel, J., Ananyev, G. M., Mayfield, S. P. & Dismukes, G. C. Engineered photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities. J. Am. Chem. Soc. 136, 4048–4055 (2014).

  61. 61.

    Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

  62. 62.

    Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

  63. 63.

    Holzwarth, A. R. et al. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895–6900 (2006).

  64. 64.

    Romero, E., van Stokkum, I. H. M., Novoderezhkin, V. I., Dekker, J. P. & van Grondelle, R. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010).

  65. 65.

    Ananyev, G. & Dismukes, G. C. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84, 355–365 (2005).

  66. 66.

    Wombwell, C., Caputo, C. A. & Reisner, E. [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 48, 2858–2865 (2015).

  67. 67.

    Tran, P. D., Artero, V. & Fontecave, M. Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ. Sci. 3, 727–747 (2010).

  68. 68.

    Brown, K. A., Wilker, M. B., Boehm, M., Dukovic, G. & King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod–[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 5627–5636 (2012).

  69. 69.

    Wilker, M. B. et al. The role of surface-capping ligands in photoexcited electron transfer between CdS nanorods and [FeFe] hydrogenase and the subsequent H2 generation. J. Phys. Chem. C 122, 741–750 (2018).

  70. 70.

    Brown, K. A., Dayal, S., Ai, X., Rumbles, G. & King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

  71. 71.

    Caputo, C. A. et al. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem. Int. Ed. 53, 11538–11542 (2014).

  72. 72.

    Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

  73. 73.

    Caputo, C. A., Wang, L., Beranek, R. & Reisner, E. Carbon nitride–TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 6, 5690–5694 (2015).

  74. 74.

    Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C. & Armstrong, F. A. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18457–18466 (2009).

  75. 75.

    Reisner, E., Fontecilla-Camps, J. C. & Armstrong, F. A. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Comm. 550–552 (2009).

  76. 76.

    Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator‐free system under high levels of oxygen. Angew. Chem. Int. Ed. 52, 12313–12316 (2013).

  77. 77.

    Adam, D. et al. Sunlight‐dependent hydrogen production by photosensitizer/hydrogenase systems. ChemSusChem 10, 894–902 (2017).

  78. 78.

    Okura, I. Hydrogenase and its application for photoinduced hydrogen evolution. Coord. Chem. Rev. 68, 53–99 (1985).

  79. 79.

    Chica, B. et al. Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod–[NiFe] hydrogenase assemblies. Energy Environ. Sci. 10, 2245–2255 (2017).

  80. 80.

    Greene, B. L., Joseph, C. A., Maroney, M. J. & Dyer, R. B. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J. Am. Chem. Soc. 134, 11108–11111 (2012).

  81. 81.

    Woolerton, T. W. et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132–2133 (2010).

  82. 82.

    Brown, K. A. et al. Photocatalytic regeneration of nicotinamide cofactors by quantum dot–enzyme biohybrid complexes. ACS Catal. 6, 2201–2204 (2016).

  83. 83.

    Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

  84. 84.

    Hickey, D. P. et al. Pyrene hydrogel for promoting direct bioelectrochemistry: ATP-independent electroenzymatic reduction of N2. Chem. Sci. 9, 5172–5177 (2018).

  85. 85.

    Milton, R. D. et al. Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 9, 2550–2554 (2016).

  86. 86.

    Noar, J., Loveless, T., Navarro-Herrero, J. L., Olson, J. W. & Bruno-Bárcena, J. M. Aerobic hydrogen production via nitrogenase in Azotobacter vinelandii CA6. Appl. Environ. Microbiol. 81, 4507–4516 (2015).

  87. 87.

    Khadka, N. et al. CO2 reduction catalyzed by nitrogenase: Pathways to formate, carbon monoxide, and methane. Inorg. Chem. 55, 8321–8330 (2016).

  88. 88.

    Cai, R. et al. Electroenzymatic C–C bond formation from CO2. J. Am. Chem. Soc. 140, 5041–5044 (2018).

  89. 89.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

  90. 90.

    Kornienko, N. et al. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proc. Natl Acad. Sci. USA 113, 11750–11755 (2016).

  91. 91.

    Sakimoto, K. K., Zhang, S. J. & Yang, P. Cysteine–cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic–biological hybrid system. Nano Lett. 16, 5883–5887 (2016).

  92. 92.

    Wang, B. et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater. 7, 1700611 (2017).

  93. 93.

    Rowe, S. F. et al. Light-driven H2 evolution and C=C or C=O bond hydrogenation by Shewanella oneidensis: A versatile strategy for photocatalysis by nonphotosynthetic microorganisms. ACS Catal. 7, 7558–7566 (2017).

  94. 94.

    Lips, D., Schuurmans, J. M., Branco dos Santos, F. & Hellingwerf, K. J. Many ways towards ‘solar fuel’: Quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy Environ. Sci. 11, 10–22 (2018).

  95. 95.

    Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177–1180 (2009).

  96. 96.

    Gao, Z., Zhao, H., Li, Z., Tan, X. & Lu, X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci. 5, 9857–9865 (2012).

  97. 97.

    Lan, E. I. et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using synechococcus elongatus PCC 7942. Metab. Eng. 31, 163–170 (2015).

  98. 98.

    Lee, C.-Y., Park, H. S., Fontecilla‐Camps, J. C. & Reisner, E. Photoelectrochemical H2 evolution with a hydrogenase immobilized on a TiO2‐protected silicon electrode. Angew. Chem. Int. Ed. 55, 5971–5974 (2016).

  99. 99.

    Leung, J. J. et al. Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172–5180 (2017).

  100. 100.

    Zhao, Y. et al. Proton reduction using a hydrogenase-modified nanoporous black silicon photoelectrode. ACS Appl. Mater. Interfaces 8, 14481–14487 (2016).

  101. 101.

    Parkinson, B. A. & Weaver, P. F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309, 148–149 (1984).

  102. 102.

    Kuk, S. K. et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem. Int. Ed. 56, 3827–3832 (2017).

  103. 103.

    Claassens, N. J., Sousa, D. Z., Martins dos Santos, V. A. P., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

  104. 104.

    Jeong, H. E., Kim, I., Karam, P., Choi, H.-J. & Yang, P. Bacterial recognition of silicon nanowire arrays. Nano Lett. 13, 2864–2869 (2013).

  105. 105.

    Sakimoto, K. K., Liu, C., Lim, J. & Yang, P. Salt-induced self-assembly of bacteria on nanowire arrays. Nano Lett. 14, 5471–5476 (2014).

  106. 106.

    Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

  107. 107.

    Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015).

  108. 108.

    Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).

  109. 109.

    Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

  110. 110.

    Liu, C., Colón, B. E., Silver, P. A. & Nocera, D. G. Solar-powered CO2 reduction by a hybrid biological | inorganic system. J. Photochem. Photobiol. A 358, 411–415 (2017).

  111. 111.

    Liu, C., Sakimoto, K. K., Colón, B. C., Silver, P. A. & Nocera, D. G. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proc. Natl Acad. Sci. USA 114, 6450–6455 (2017).

  112. 112.

    Milton, R. D. et al. The in vivo potential-regulated protective protein of nitrogenase in Azotobacter vinelandii supports aerobic bioelectrochemical dinitrogen reduction in vitro. J. Am. Chem. Soc. 139, 9044–9052 (2017).

  113. 113.

    Nangle, S. N., Sakimoto, K. K., Silver, P. A. & Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).

  114. 114.

    Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S. & May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 47, 6023–6029 (2013).

  115. 115.

    Siegert, M. et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain. Chem. Eng. 2, 910–917 (2014).

  116. 116.

    Zhang, T. et al. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217–224 (2013).

  117. 117.

    Matsuda, S. et al. Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella. PLoS One 8, e72901 (2013).

  118. 118.

    Sakimoto, K. K. et al. Physical biology of the materials-microorganism interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).

  119. 119.

    Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy (2018).

  120. 120.

    Wijffels, R. H., Barbosa, M. J. & Eppink, M. H. M. Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Biorefin. 4, 287–295 (2010).

Download references


N.K. gratefully acknowledges a Royal Society Newton International Fellowship (NF160054). K.K.S. acknowledges the Harvard University Center for the Environment Fellowship. This work was supported by Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231, FWP No. CH030201 (Catalysis Research Program). E.R. and J.Z.Z. acknowledge an ERC Consolidator Grant ‘MatEnSAP’ (682833). We thank N. Heidary, W. Robinson and S. Kalathil for discussions.

Author information


  1. Department of Chemistry, University of Cambridge, Cambridge, UK

    • Nikolay Kornienko
    • , Jenny Z. Zhang
    •  & Erwin Reisner
  2. Department of Chemistry, University of California, Berkeley, CA, USA

    • Nikolay Kornienko
    • , Kelsey K. Sakimoto
    •  & Peidong Yang
  3. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

    • Kelsey K. Sakimoto
  4. Department of Systems Biology, Harvard Medical School, Boston, MA, USA

    • Kelsey K. Sakimoto
  5. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Peidong Yang
  6. Kavli Energy NanoSciences Institute, Berkeley, CA, USA

    • Peidong Yang
  7. Department of Materials Science and Engineering, University of California, Berkeley, CA, USA

    • Peidong Yang


  1. Search for Nikolay Kornienko in:

  2. Search for Jenny Z. Zhang in:

  3. Search for Kelsey K. Sakimoto in:

  4. Search for Peidong Yang in:

  5. Search for Erwin Reisner in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Peidong Yang or Erwin Reisner.

About this article

Publication history





Further reading