Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis

Abstract

Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. The progress and studies of these hybrid systems is the focus of this forward-looking perspective. In this Review, we discuss how enzymes have been interfaced with synthetic materials and employed for semi-artificial fuel production. In parallel, we examine how more complex living cellular systems can be recruited for in vivo fuel and chemical production in an approach where inorganic nanostructures are hybridized with photosynthetic and non-photosynthetic microorganisms. Side-by-side comparisons reveal strengths and limitations of enzyme- and microorganism-based hybrid systems, and how lessons extracted from studying enzyme hybrids can be applied to investigations of microorganism-hybrid devices. We conclude by putting semi-artificial photosynthesis in the context of its own ambitions and discuss how it can help address the grand challenges facing artificial systems for the efficient generation of solar fuels and chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strengths and limitations of photosynthetic systems across the natural–artificial spectrum.
Fig. 2: Semi-artificial photoanodes.
Fig. 3: Colloidal enzyme- and cell-hybrid semi-artificial photosynthetic systems.
Fig. 4: Semi-artificial photocathodes.

Similar content being viewed by others

References

  1. Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    CAS  Google Scholar 

  2. Williams, P. Jl. B. & Laurens, L. M. L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554–590 (2010).

    CAS  Google Scholar 

  3. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    CAS  Google Scholar 

  4. Vogt, L., Vinyard, D. J., Khan, S. & Brudvig, G. W. Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 25, 152–158 (2015).

    CAS  Google Scholar 

  5. Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    CAS  Google Scholar 

  6. Gray, H. B. & Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).

    CAS  Google Scholar 

  7. Wang, B., Wang, J., Zhang, W. & Meldrum, D. R. Application of synthetic biology in cyanobacteria and algae. Front. Microbiol. 3, 1–15 (2012).

    Google Scholar 

  8. McNeely, K., Xu, Y., Bennette, N., Bryant, D. A. & Dismukes, G. C. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol. 76, 5032–5038 (2010).

    CAS  Google Scholar 

  9. Zhu, X.-G., Long, S. P. & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    CAS  Google Scholar 

  10. Zhu, X.-G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  Google Scholar 

  11. Michel, H. The nonsense of biofuels. Angew. Chem. Int. Ed. 51, 2516–2518 (2012).

    CAS  Google Scholar 

  12. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  Google Scholar 

  13. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    CAS  Google Scholar 

  14. Zhou, X. et al. Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett. 1, 764–770 (2016).

    CAS  Google Scholar 

  15. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    CAS  Google Scholar 

  16. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    CAS  Google Scholar 

  17. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    CAS  Google Scholar 

  18. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    CAS  Google Scholar 

  19. Rosen, B. A. et al. Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    CAS  Google Scholar 

  20. Gong, M. et al. Supramolecular porphyrin cages assembled at molecular–materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 3, 1032–1040 (2017).

    CAS  Google Scholar 

  21. Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    CAS  Google Scholar 

  22. Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS  Google Scholar 

  23. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Google Scholar 

  24. McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of bipolar membranes for maintaining steady‐state ph gradients in membrane‐supported, solar‐driven water splitting. ChemSusChem 7, 3021–3027 (2014).

    CAS  Google Scholar 

  25. Sakimoto, K. K., Kornienko, N. & Yang, P. Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 50, 476–481 (2017).

    CAS  Google Scholar 

  26. Kumar, A. et al. The ins and outs of microorganism–electrode electron transfer reactions. Nat. Rev. Chem. 1, 0024 (2017).

    CAS  Google Scholar 

  27. Breuer, M., Rosso, K. M., Blumberger, J. & Butt, J. N. Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015).

    Google Scholar 

  28. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    CAS  Google Scholar 

  29. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    CAS  Google Scholar 

  30. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  31. Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    CAS  Google Scholar 

  32. Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium–tin oxide electrode. J. Am. Chem. Soc. 134, 8332–8335 (2012).

    CAS  Google Scholar 

  33. Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS  Google Scholar 

  34. Vittadello, M. et al. Photoelectron generation by photosystem II core complexes tethered to gold surfaces. ChemSusChem 3, 471–475 (2010).

    CAS  Google Scholar 

  35. Sokol, K. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698–3709 (2016).

    CAS  Google Scholar 

  36. Badura, A. et al. Photo‐induced electron transfer between photosystem 2 via cross‐linked redox hydrogels. Electroanalysis 20, 1043–1047 (2008).

    CAS  Google Scholar 

  37. Cai, P. et al. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale 7, 10908–10911 (2015).

    CAS  Google Scholar 

  38. Terasaki, N. et al. Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516, 2553–2557 (2008).

    CAS  Google Scholar 

  39. Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 135, 10610–10613 (2013).

    CAS  Google Scholar 

  40. Nam, D. H. et al. Solar water splitting with a hydrogenase integrated in photoelectrochemical tandem cells. Angew. Chem. Int. Ed. 57, 10595–10599 (2018).

    CAS  Google Scholar 

  41. Wang, W. et al. Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chem. Comm. 51, 16952–16955 (2015).

    CAS  Google Scholar 

  42. Wang, W., Chen, J., Li, C. & Tian, W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat. Commun. 5, 4647 (2014).

    CAS  Google Scholar 

  43. Kothe, T. et al. Combination of a photosystem 1‐based photocathode and a photosystem 2‐based photoanode to a z‐scheme mimic for biophotovoltaic applications. Angew. Chem. Int. Ed. 52, 14233–14236 (2013).

    CAS  Google Scholar 

  44. Hamidi, H. et al. Photocurrent generation from thylakoid membranes on osmium‐redox‐polymer‐modified electrodes. ChemSusChem 8, 990–993 (2015).

    CAS  Google Scholar 

  45. Calkins, J. O., Umasankar, Y., O’Neill, H. & Ramasamy, R. P. High photo-electrochemical activity of thylakoid–carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 6, 1891–1900 (2013).

    CAS  Google Scholar 

  46. Pinhassi, R. I. et al. Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat. Commun. 7, 12552 (2016).

    CAS  Google Scholar 

  47. Rasmussen, M. & Minteer, S. D. Investigating the mechanism of thylakoid direct electron transfer for photocurrent generation. Electrochim. Acta 126, 68–73 (2014).

    CAS  Google Scholar 

  48. Zhang, J. Z. et al. Photoelectrochemistry of Photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    CAS  Google Scholar 

  49. McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).

    CAS  Google Scholar 

  50. Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676–24680 (2014).

    CAS  Google Scholar 

  51. Darus, L., Ledezma, P., Keller, J. & Freguia, S. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynth. Res. 127, 347–354 (2016).

    CAS  Google Scholar 

  52. Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).

    CAS  Google Scholar 

  53. Bhardwaj, R., Pan, R. L. & Gross, E. L. Solar energy conversion by chloroplast photoelectrochemical cells. Nature 289, 396–398 (1981).

    CAS  Google Scholar 

  54. Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883–12888 (2014).

    CAS  Google Scholar 

  55. He, Z. & Mansfeld, F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2, 215–219 (2009).

    CAS  Google Scholar 

  56. Millo, D. et al. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface‐enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed. 50, 2625–2627 (2011).

    CAS  Google Scholar 

  57. Busalmen, J. P., Esteve‐Núñez, A., Berná, A. & Feliu, J. M. C‐type cytochromes wire electricity‐producing bacteria to electrodes. Angew. Chem. Int. Ed. 47, 4874–4877 (2008).

    CAS  Google Scholar 

  58. Jiang, X. et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl Acad. Sci. USA 107, 16806–16810 (2010).

    CAS  Google Scholar 

  59. Ding, M. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

    CAS  Google Scholar 

  60. Vinyard, D. J., Gimpel, J., Ananyev, G. M., Mayfield, S. P. & Dismukes, G. C. Engineered photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities. J. Am. Chem. Soc. 136, 4048–4055 (2014).

    CAS  Google Scholar 

  61. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    CAS  Google Scholar 

  62. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    CAS  Google Scholar 

  63. Holzwarth, A. R. et al. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895–6900 (2006).

    CAS  Google Scholar 

  64. Romero, E., van Stokkum, I. H. M., Novoderezhkin, V. I., Dekker, J. P. & van Grondelle, R. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010).

    CAS  Google Scholar 

  65. Ananyev, G. & Dismukes, G. C. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84, 355–365 (2005).

    CAS  Google Scholar 

  66. Wombwell, C., Caputo, C. A. & Reisner, E. [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 48, 2858–2865 (2015).

    CAS  Google Scholar 

  67. Tran, P. D., Artero, V. & Fontecave, M. Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ. Sci. 3, 727–747 (2010).

    CAS  Google Scholar 

  68. Brown, K. A., Wilker, M. B., Boehm, M., Dukovic, G. & King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod–[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 5627–5636 (2012).

    CAS  Google Scholar 

  69. Wilker, M. B. et al. The role of surface-capping ligands in photoexcited electron transfer between CdS nanorods and [FeFe] hydrogenase and the subsequent H2 generation. J. Phys. Chem. C 122, 741–750 (2018).

    CAS  Google Scholar 

  70. Brown, K. A., Dayal, S., Ai, X., Rumbles, G. & King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

    CAS  Google Scholar 

  71. Caputo, C. A. et al. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew. Chem. Int. Ed. 53, 11538–11542 (2014).

    CAS  Google Scholar 

  72. Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

    CAS  Google Scholar 

  73. Caputo, C. A., Wang, L., Beranek, R. & Reisner, E. Carbon nitride–TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 6, 5690–5694 (2015).

    CAS  Google Scholar 

  74. Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C. & Armstrong, F. A. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18457–18466 (2009).

    CAS  Google Scholar 

  75. Reisner, E., Fontecilla-Camps, J. C. & Armstrong, F. A. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Comm. 550–552 (2009).

  76. Sakai, T., Mersch, D. & Reisner, E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator‐free system under high levels of oxygen. Angew. Chem. Int. Ed. 52, 12313–12316 (2013).

    CAS  Google Scholar 

  77. Adam, D. et al. Sunlight‐dependent hydrogen production by photosensitizer/hydrogenase systems. ChemSusChem 10, 894–902 (2017).

    CAS  Google Scholar 

  78. Okura, I. Hydrogenase and its application for photoinduced hydrogen evolution. Coord. Chem. Rev. 68, 53–99 (1985).

    CAS  Google Scholar 

  79. Chica, B. et al. Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod–[NiFe] hydrogenase assemblies. Energy Environ. Sci. 10, 2245–2255 (2017).

    CAS  Google Scholar 

  80. Greene, B. L., Joseph, C. A., Maroney, M. J. & Dyer, R. B. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J. Am. Chem. Soc. 134, 11108–11111 (2012).

    CAS  Google Scholar 

  81. Woolerton, T. W. et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132–2133 (2010).

    CAS  Google Scholar 

  82. Brown, K. A. et al. Photocatalytic regeneration of nicotinamide cofactors by quantum dot–enzyme biohybrid complexes. ACS Catal. 6, 2201–2204 (2016).

    CAS  Google Scholar 

  83. Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

    CAS  Google Scholar 

  84. Hickey, D. P. et al. Pyrene hydrogel for promoting direct bioelectrochemistry: ATP-independent electroenzymatic reduction of N2. Chem. Sci. 9, 5172–5177 (2018).

    CAS  Google Scholar 

  85. Milton, R. D. et al. Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ. Sci. 9, 2550–2554 (2016).

    CAS  Google Scholar 

  86. Noar, J., Loveless, T., Navarro-Herrero, J. L., Olson, J. W. & Bruno-Bárcena, J. M. Aerobic hydrogen production via nitrogenase in Azotobacter vinelandii CA6. Appl. Environ. Microbiol. 81, 4507–4516 (2015).

    CAS  Google Scholar 

  87. Khadka, N. et al. CO2 reduction catalyzed by nitrogenase: Pathways to formate, carbon monoxide, and methane. Inorg. Chem. 55, 8321–8330 (2016).

    CAS  Google Scholar 

  88. Cai, R. et al. Electroenzymatic C–C bond formation from CO2. J. Am. Chem. Soc. 140, 5041–5044 (2018).

    CAS  Google Scholar 

  89. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    CAS  Google Scholar 

  90. Kornienko, N. et al. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proc. Natl Acad. Sci. USA 113, 11750–11755 (2016).

    CAS  Google Scholar 

  91. Sakimoto, K. K., Zhang, S. J. & Yang, P. Cysteine–cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic–biological hybrid system. Nano Lett. 16, 5883–5887 (2016).

    CAS  Google Scholar 

  92. Wang, B. et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater. 7, 1700611 (2017).

    Google Scholar 

  93. Rowe, S. F. et al. Light-driven H2 evolution and C=C or C=O bond hydrogenation by Shewanella oneidensis: A versatile strategy for photocatalysis by nonphotosynthetic microorganisms. ACS Catal. 7, 7558–7566 (2017).

    CAS  Google Scholar 

  94. Lips, D., Schuurmans, J. M., Branco dos Santos, F. & Hellingwerf, K. J. Many ways towards ‘solar fuel’: Quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy Environ. Sci. 11, 10–22 (2018).

    CAS  Google Scholar 

  95. Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177–1180 (2009).

    CAS  Google Scholar 

  96. Gao, Z., Zhao, H., Li, Z., Tan, X. & Lu, X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci. 5, 9857–9865 (2012).

    CAS  Google Scholar 

  97. Lan, E. I. et al. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using synechococcus elongatus PCC 7942. Metab. Eng. 31, 163–170 (2015).

    CAS  Google Scholar 

  98. Lee, C.-Y., Park, H. S., Fontecilla‐Camps, J. C. & Reisner, E. Photoelectrochemical H2 evolution with a hydrogenase immobilized on a TiO2‐protected silicon electrode. Angew. Chem. Int. Ed. 55, 5971–5974 (2016).

    CAS  Google Scholar 

  99. Leung, J. J. et al. Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172–5180 (2017).

    CAS  Google Scholar 

  100. Zhao, Y. et al. Proton reduction using a hydrogenase-modified nanoporous black silicon photoelectrode. ACS Appl. Mater. Interfaces 8, 14481–14487 (2016).

    CAS  Google Scholar 

  101. Parkinson, B. A. & Weaver, P. F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309, 148–149 (1984).

    CAS  Google Scholar 

  102. Kuk, S. K. et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem. Int. Ed. 56, 3827–3832 (2017).

    CAS  Google Scholar 

  103. Claassens, N. J., Sousa, D. Z., Martins dos Santos, V. A. P., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    CAS  Google Scholar 

  104. Jeong, H. E., Kim, I., Karam, P., Choi, H.-J. & Yang, P. Bacterial recognition of silicon nanowire arrays. Nano Lett. 13, 2864–2869 (2013).

    CAS  Google Scholar 

  105. Sakimoto, K. K., Liu, C., Lim, J. & Yang, P. Salt-induced self-assembly of bacteria on nanowire arrays. Nano Lett. 14, 5471–5476 (2014).

    CAS  Google Scholar 

  106. Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    CAS  Google Scholar 

  107. Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015).

    CAS  Google Scholar 

  108. Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).

    CAS  Google Scholar 

  109. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    CAS  Google Scholar 

  110. Liu, C., Colón, B. E., Silver, P. A. & Nocera, D. G. Solar-powered CO2 reduction by a hybrid biological | inorganic system. J. Photochem. Photobiol. A 358, 411–415 (2017).

    Google Scholar 

  111. Liu, C., Sakimoto, K. K., Colón, B. C., Silver, P. A. & Nocera, D. G. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proc. Natl Acad. Sci. USA 114, 6450–6455 (2017).

    CAS  Google Scholar 

  112. Milton, R. D. et al. The in vivo potential-regulated protective protein of nitrogenase in Azotobacter vinelandii supports aerobic bioelectrochemical dinitrogen reduction in vitro. J. Am. Chem. Soc. 139, 9044–9052 (2017).

    CAS  Google Scholar 

  113. Nangle, S. N., Sakimoto, K. K., Silver, P. A. & Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).

    CAS  Google Scholar 

  114. Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S. & May, H. D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 47, 6023–6029 (2013).

    CAS  Google Scholar 

  115. Siegert, M. et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain. Chem. Eng. 2, 910–917 (2014).

    CAS  Google Scholar 

  116. Zhang, T. et al. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217–224 (2013).

    CAS  Google Scholar 

  117. Matsuda, S. et al. Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella. PLoS One 8, e72901 (2013).

    CAS  Google Scholar 

  118. Sakimoto, K. K. et al. Physical biology of the materials-microorganism interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).

    CAS  Google Scholar 

  119. Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy https://doi.org/10.1038/s41560-018-0232-y (2018).

  120. Wijffels, R. H., Barbosa, M. J. & Eppink, M. H. M. Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Biorefin. 4, 287–295 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

N.K. gratefully acknowledges a Royal Society Newton International Fellowship (NF160054). K.K.S. acknowledges the Harvard University Center for the Environment Fellowship. This work was supported by Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231, FWP No. CH030201 (Catalysis Research Program). E.R. and J.Z.Z. acknowledge an ERC Consolidator Grant ‘MatEnSAP’ (682833). We thank N. Heidary, W. Robinson and S. Kalathil for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peidong Yang or Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornienko, N., Zhang, J.Z., Sakimoto, K.K. et al. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nature Nanotech 13, 890–899 (2018). https://doi.org/10.1038/s41565-018-0251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0251-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research