Minimum information reporting in bio–nano experimental literature


Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio–nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a ‘minimum information standard’ for experimental literature investigating bio–nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio–nano materials, and facilitate meta analyses and in silico modelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of MIRIBEL components, guiding principles and potential benefits.


  1. 1.

    Cui, J., Richardson, J. J., Björnmalm, M., Faria, M. & Caruso, F. Nanoengineered templated polymer particles: navigating the biological realm. Acc. Chem. Res. 49, 1139–1148 (2016).

    Article  Google Scholar 

  2. 2.

    Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    Article  Google Scholar 

  3. 3.

    Malysheva, A., Lombi, E. & Voelcker, N. H. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotech. 10, 835–844 (2015).

    Article  Google Scholar 

  4. 4.

    Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  Google Scholar 

  5. 5.

    Björnmalm, M., Faria, M. & Caruso, F. Increasing the impact of materials in and beyond bio-nano science. J. Am. Chem. Soc. 138, 13449–13456 (2016).

    Article  Google Scholar 

  6. 6.

    Mulvaney, P., Parak, W. J., Caruso, F. & Weiss, P. S. Standardizing nanomaterials. ACS Nano 10, 9763–9764 (2016).

    Article  Google Scholar 

  7. 7.

    Murashov, V. & Howard, J. (eds) Nanotechnology Standards (Springer Science & Business Media, Berlin, Heidelberg, 2011).

    Google Scholar 

  8. 8.

    Pettitt, M. E. & Lead, J. R. Minimum physicochemical characterization requirements for nanomaterial regulation. Environ. Int. 52, 41–50 (2013).

    Article  Google Scholar 

  9. 9.

    Mills, K. C., Murry, D., Guzan, K. A. & Ostraat, M. L. Nanomaterial registry: database that captures the minimal information about nanomaterial physico-chemical characteristics. J. Nanoparticle Res. 16, 2219 (2014).

    Article  Google Scholar 

  10. 10.

    Boyes, W. K. et al. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit. Rev. Toxicol. 47, 771–814 (2017).

    Article  Google Scholar 

  11. 11.

    Hristozov, D. et al. Frameworks and tools for risk assessment of manufactured nanomaterials. Environ. Int. 95, 36–53 (2016).

    Article  Google Scholar 

  12. 12.

    Join the dialogue. Nat. Nanotech. 7, 545 (2012).

    Article  Google Scholar 

  13. 13.

    The dialogue continues. Nat. Nanotech. 8, 69 (2013).

    Article  Google Scholar 

  14. 14.

    Schrurs, F. & Lison, D. Focusing the research efforts. Nat. Nanotech. 7, 546–548 (2012).

    Article  Google Scholar 

  15. 15.

    McCall, M. J. et al. A tiered approach. Nat. Nanotech. 8, 307–308 (2013).

    Article  Google Scholar 

  16. 16.

    Checklists work to improve science. Nature 556, 273–274 (2018).

    Google Scholar 

  17. 17.

    Han, S. et al. A checklist is associated with increased quality of reporting preclinical biomedical research: a systematic review. PLoS ONE 12, e0183591 (2017).

    Article  Google Scholar 

  18. 18.

    Novère, N. L. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23, 1509–1515 (2005).

    Article  Google Scholar 

  19. 19.

    Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–71 (2001).

    Article  Google Scholar 

  20. 20.

    Taylor, C. F. et al. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 26, 889–896 (2008).

    Article  Google Scholar 

  21. 21.

    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article  Google Scholar 

  22. 22.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  Google Scholar 

  23. 23.

    Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016).

    Article  Google Scholar 

  24. 24.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  25. 25.

    Gaheen, S. et al. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine. Comput. Sci. Disc. 6, 014010 (2013).

    Article  Google Scholar 

  26. 26.

    Thomas, D. G. et al. ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol. 13, 2 (2013).

    Article  Google Scholar 

  27. 27.

    Hühn, J. et al. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem. Mater. 29, 399–461 (2017).

    Article  Google Scholar 

  28. 28.

    Dawidczyk, C. M., Russell, L. M. & Searson, P. C. Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res. 75, 4016–4020 (2015).

    Article  Google Scholar 

  29. 29.

    Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology (FDA, 2018);

  30. 30.

    Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    Article  Google Scholar 

  31. 31.

    Buriak, J. M. Preface to the special issue on methods and protocols in materials chemistry. Chem. Mater. 29, 1–2 (2017).

    Article  Google Scholar 

  32. 32.

    Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Article  Google Scholar 

  33. 33.

    Hadjidemetriou, M. & Kostarelos, K. Nanomedicine: Evolution of the nanoparticle corona. Nat. Nanotech 12, 288–290 (2017).

    Article  Google Scholar 

  34. 34.

    Satzer, P., Svec, F., Sekot, G. & Jungbauer, A. Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng. Life Sci. 16, 238–246 (2016).

    Article  Google Scholar 

  35. 35.

    Talamini, L. et al. Influence of size and shape on the anatomical distribution of endotoxin-free gold nanoparticles. ACS Nano 11, 5519–5529 (2017).

    Article  Google Scholar 

  36. 36.

    Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  Google Scholar 

  37. 37.

    Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotech. 3, 145–150 (2008).

    Article  Google Scholar 

  38. 38.

    Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  Google Scholar 

  39. 39.

    Sperling, R. A. et al. Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J. Phys. Chem. C 111, 11552–11559 (2007).

    Article  Google Scholar 

  40. 40.

    Moore, T. L. et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287–6305 (2015).

    Article  Google Scholar 

  41. 41.

    Glass, J. J. et al. Charge has a marked influence on hyperbranched polymer nanoparticle association in whole human blood. ACS Macro Lett. 6, 586–592 (2017).

    Article  Google Scholar 

  42. 42.

    Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  Google Scholar 

  43. 43.

    Doane, T. L., Chuang, C.-H., Hill, R. J. & Burda, C. Nanoparticle ζ-potentials. Acc. Chem. Res. 45, 317–326 (2012).

    Article  Google Scholar 

  44. 44.

    Hinderliter, P. M. et al. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol 7, 36 (2010).

    Article  Google Scholar 

  45. 45.

    Cui, J. et al. A framework to account for sedimentation and diffusion in particle–cell interactions. Langmuir 32, 12394–12402 (2016).

    Article  Google Scholar 

  46. 46.

    DeLoid, G. M., Cohen, J. M., Pyrgiotakis, G. & Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 12, 355–371 (2017).

    Article  Google Scholar 

  47. 47.

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  Google Scholar 

  48. 48.

    Allen, T. M. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  Google Scholar 

  49. 49.

    Howard, C. B. et al. Overcoming instability of antibody-nanomaterial conjugates: next generation targeted nanomedicines using bispecific antibodies. Adv. Healthcare Mater. 5, 2055–2068 (2016).

    Article  Google Scholar 

  50. 50.

    Kamphuis, M. M. J. et al. Targeting of cancer cells using click-functionalized polymer capsules. J. Am. Chem. Soc. 132, 15881–15883 (2010).

    Article  Google Scholar 

  51. 51.

    Ju, Y. et al. Engineered metal-phenolic capsules show tunable targeted delivery to cancer cells. Biomacromolecules 17, 2268–2276 (2016).

    Article  Google Scholar 

  52. 52.

    Colombo, M. et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 7, 13818 (2016).

    Article  Google Scholar 

  53. 53.

    Torrice, M. Does nanomedicine have a delivery problem? ACS Cent. Sci. 2, 434–437 (2016).

    Article  Google Scholar 

  54. 54.

    Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).

    Article  Google Scholar 

  55. 55.

    Björnmalm, M., Thurecht, K. J., Michael, M., Scott, A. M. & Caruso, F. Bridging bio–nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017).

    Article  Google Scholar 

  56. 56.

    Herda, L. M., Hristov, D. R., Lo Giudice, M. C., Polo, E. & Dawson, K. A. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J. Am. Chem. Soc. 139, 111–114 (2017).

    Article  Google Scholar 

  57. 57.

    Peng, H.-S. & Chiu, D. T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 44, 4699–4722 (2015).

    Article  Google Scholar 

  58. 58.

    Puttick, S., Boase, N. R. B., Blakey, I. & Thurecht, K. J. Imaging tumour distribution of a polymeric drug delivery platform in vivo by PET-MRI. J. Chem. Technol. Biotechnol. 90, 1237–1244 (2015).

    Article  Google Scholar 

  59. 59.

    Wang, K., Peng, H., Thurecht, K. J., Puttick, S. & Whittaker, A. K. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym. Chem. 7, 1059–1069 (2016).

    Article  Google Scholar 

  60. 60.

    Rolfe, B. E. et al. Multimodal polymer nanoparticles with combined19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136, 2413–2419 (2014).

    Article  Google Scholar 

  61. 61.

    Michalet, X. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  Google Scholar 

  62. 62.

    Schwartz, A. et al. Formalization of the MESF unit of fluorescence intensity. Cytometry 57B, 1–6 (2004).

    Article  Google Scholar 

  63. 63.

    Anselmo, A. C. & Mitragotri, S. Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Delivery Rev. 108, 51–67 (2017).

    Article  Google Scholar 

  64. 64.

    Berry, J. D., Mettu, S. & Dagastine, R. R. Precise measurements of capsule mechanical properties using indentation. Soft Matter 13, 1943–1947 (2017).

    Article  Google Scholar 

  65. 65.

    Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D. & Pounds, J. G. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007).

    Article  Google Scholar 

  66. 66.

    Feliu, N., Sun, X., Alvarez Puebla, R. A. & Parak, W. J. Quantitative particle–cell interaction: some basic physicochemical pitfalls. Langmuir 33, 6639–6646 (2017).

    Article  Google Scholar 

  67. 67.

    Almeida, J. L., Cole, K. D. & Plant, A. L. Standards for cell line authentication and beyond. PLoS Biol. 14, e1002476 (2016).

    Article  Google Scholar 

  68. 68.

    Olarerin-George, A. O. & Hogenesch, J. B. Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI’s RNA-seq archive. Nucleic Acids Res. 43, 2535–2542 (2015).

    Article  Google Scholar 

  69. 69.

    Kim, J. A., Åberg, C., Salvati, A. & Dawson, K. A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotech. 7, 62–68 (2012).

    Article  Google Scholar 

  70. 70.

    Morgan, R. A. Human tumor xenografts: the good, the bad, and the ugly. Mol. Ther. 20, 882–884 (2012).

    Article  Google Scholar 

  71. 71.

    Yan, Y. et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7, 10960–10970 (2013).

    Article  Google Scholar 

  72. 72.

    Delmaar, C. J. E. et al. A practical approach to determine dose metrics for nanomaterials. Environ. Toxicol. Chem. 34, 1015–1022 (2015).

    Article  Google Scholar 

  73. 73.

    Johnston, A. P. R. Life under the microscope: quantifying live cell interactions to improve nanoscale drug delivery. ACS Sensors 2, 4–9 (2017).

    Article  Google Scholar 

  74. 74.

    Hibbert, D. B. Quality Assurance in the Analytical Chemistry Laboratory (Oxford University Press, Oxford, 2007).

    Google Scholar 

  75. 75.

    OpenDataFit. Available at (Accessed 3 January 2018).

  76. 76.

    Joining the reproducibility initiative. Nat. Nanotech. 9, 949 (2014).

    Article  Google Scholar 

  77. 77.

    Scrutinizing lasers. Nat. Photon. 11, 139 (2017).

    Article  Google Scholar 

  78. 78.

    Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

    Article  Google Scholar 

  79. 79.

    Chen, R. & Riviere, J. E. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1440 (2017).

    Article  Google Scholar 

Download references


This work was supported by the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (Project Number CE140100036) and under the ARC Australian Laureate Fellowship scheme (F.C., FL120100030; T.P.D., FL140100052; J.J.G., FL150100060). M.B. acknowledges support from H2020/European Commission through a Marie Skłodowska-Curie Individual Fellowship under grant agreement no. 745676. F.C. acknowledges the award of a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship (APP1135806). M.K. receives support from NHMRC Principal Research Fellowship (M.K.; APP1119152) and Cancer Council New South Wales Program Grant (PG16-01). M.K., T.P.D. and J.J.G. receive support from NHMRC Program Grant (APP1091261). A.P.R.J. receives support from the NHMRC Career Development Fellowship (APP1141551) and NHMRC Project Grants (APP1129672, APP1124161). R.G.P. receives support from NHMRC Senior Principal Research Fellowship (APP1058565) and NHMRC Program Grant (APP1037320). W.J.P. acknowledges funding from the Deutsche Forschungsgemeinschaft (project DFG PA 794/28-1) and a visiting professor fellowship from the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology. M.M.S. acknowledges support from the ERC Seventh Framework Programme Consolidator grant “Naturale CG” [616417], the i-sense EPSRC IRC in Early Warning Sensing Systems for Infectious Diseases (EP/K031953/1) and the EPSRC grant “Bio-functionalised nanomaterials for ultrasensitive biosensing” (EP/K020641/1). The authors thank A. E. Burke and C. Lynm for assistance with the preparation of Fig. 1. The development of these guidelines was led by the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (

Author information



Corresponding authors

Correspondence to Edmund J. Crampin or Frank Caruso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faria, M., Björnmalm, M., Thurecht, K.J. et al. Minimum information reporting in bio–nano experimental literature. Nature Nanotech 13, 777–785 (2018).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research