Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The role of nanotechnology in industrial water treatment

Abstract

High-quality water is essential for most industrial processes, and many of these processes generate large volumes of contaminated wastewater. Nanotechnology has the potential to make industrial water treatment more efficient and less expensive, though promising technologies must be demonstrated at higher scales to make a real impact.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Dieter, C. A. et al. Estimated Use of Water in the United States in 2015. Water Availability and Use Science Program Circular 1441, 76 (USGS, 2018).

  2. Adham, S., Hussain, A., Minier-Matar, J., Janson, A. & Sharma, R. Desalination 440, 2–17 (2018).

    Article  CAS  Google Scholar 

  3. Ayers, R. S. & Westcot, D. S. Water Quality for Agriculture (UN FAO, 1985).

  4. Bouwer, H. J. Environ. Health 63, 17–20 (2000).

    Google Scholar 

  5. De Gisi, S. & Notarnicola, M. in Encyclopedia of Sustainable Technologies (ed. Abraham, M. A.) 23–42 (Elsevier, Oxford, 2017).

  6. National Pollutant Discharge Elimination System Environmenal Protection Agency https://www.epa.gov/npdes/national-pretreatment-program (2017).

  7. Gnaneswar Gude, V. Sustainable Desalination Handbook: Plant Selection, Design and Implementation 1st edn (Butterworth-Heinemann, Oxford, 2018).

    Google Scholar 

  8. Duan, W. et al. J. Membrane Sci. 504, 104–112 (2016).

    Article  CAS  Google Scholar 

  9. Ronen, A., Walker, S. L. & Jassby, D. Rev. Chem. Eng. 32, 533–550 (2016).

    Article  CAS  Google Scholar 

  10. de Lannoy, C.-F., Jassby, D., Gloe, K., Gordon, A. D. & Wiesner, M. R. Environ. Sci. Technol. 47, 2760–2768 (2013).

    Article  Google Scholar 

  11. Tang, L. et al. ACS Appl. Mater. Interfaces 9, 38594–38605 (2017).

    Article  CAS  Google Scholar 

  12. Duan, W. et al. J. Membrane Sci. 531, 160–171 (2017).

    Article  CAS  Google Scholar 

  13. Duan, W., Ronen, A., Walker, S. L. & Jassby, D. ACS Appl. Mater. Interfaces 8, 22574–22584 (2016).

    Article  CAS  Google Scholar 

  14. Dudchenko, A. V., Rolf, J., Russell, K., Duan, W. & Jassby, D. J. Membrane Sci. 468, 1–10 (2014).

    Article  CAS  Google Scholar 

  15. Liu, H., Vajpayee, A. & Vecitis, C. D. ACS Appl. Mater. Interfaces 5, 10054–10066 (2013).

    Article  CAS  Google Scholar 

  16. Shaffer, D. L. et al. Environ. Sci. Technol. 47, 9569–9583 (2013).

    Article  CAS  Google Scholar 

  17. Neumann, O. et al. ACS Nano 7, 42–49 (2012).

    Article  Google Scholar 

  18. Zhou, L. et al. Nat. Photon. 10, 393–398 (2016).

    Article  CAS  Google Scholar 

  19. Dongare, P. D. et al. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    Article  CAS  Google Scholar 

  20. Yi, L. et al. Nano Energy 41, 600–608 (2017).

    Article  CAS  Google Scholar 

  21. Finnerty, C., Zhang, L., Sedlak, D. L., Nelson, K. L. & Mi, B. Environ. Sci. Technol. 51, 11701–11709 (2017).

    Article  CAS  Google Scholar 

  22. Dudchenko, A. V., Chen, C., Cardenas, A., Rolf, J. & Jassby, D. Nat. Nanotech. 12, 557–563 (2017).

    Article  CAS  Google Scholar 

  23. Lin, S. et al. Environ. Sci. Technol. Lett. 1, 443–447 (2014).

    Article  CAS  Google Scholar 

  24. Li, J.-H., Shao, X.-S., Zhou, Q., Li, M.-Z. & Zhang, Q.-Q. Appl. Surf. Sci. 265, 663–670 (2013).

    Article  CAS  Google Scholar 

  25. Dudchenko, A. V. et al. ACS Nano 9, 9930–9941 (2015).

    Article  CAS  Google Scholar 

  26. Cohen-Tanugi, D. & Grossman, J. C. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  27. Surwade, S. P. et al. Nat. Nanotech. 10, 459–464 (2015).

    Article  CAS  Google Scholar 

  28. Abraham, J. et al. Nat. Nanotech. 12, 546–550 (2017).

    Article  CAS  Google Scholar 

  29. Hung, W.-S. et al. Chem. Mater. 26, 2983–2990 (2014).

    Article  CAS  Google Scholar 

  30. Wei, Y. et al. RSC Adv. 8, 13656–13663 (2018).

    Article  CAS  Google Scholar 

  31. Zhi, L., Zuo, W., Chen, F. & Wang, B. Sustain. Chem. Eng. 4, 3398–3408 (2016).

    Article  CAS  Google Scholar 

  32. Rauf, M. & Ashraf, S. S. Chem. Eng. J. 151, 10–18 (2009).

    Article  CAS  Google Scholar 

  33. Gaya, U. I. & Abdullah, A. H. J. Photochem. Photobiol. C 9, 1–12 (2008).

    Article  CAS  Google Scholar 

  34. He, W. et al. J. Am. Chem. Soc. 136, 750–757 (2013).

    Article  Google Scholar 

  35. Auffan, M. et al. Nat. Nanotech. 4, 634–641 (2009).

    Article  CAS  Google Scholar 

  36. Kasai, T. et al. Nanotoxicology 9, 413–422 (2015).

    Article  CAS  Google Scholar 

  37. Wang, Z., Zhang, L., Zhao, J. & Xing, B. Environ. Sci. Nano 3, 240–255 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jassby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassby, D., Cath, T.Y. & Buisson, H. The role of nanotechnology in industrial water treatment. Nature Nanotech 13, 670–672 (2018). https://doi.org/10.1038/s41565-018-0234-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0234-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene