Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nano-imaging of intersubband transitions in van der Waals quantum wells


The science and applications of electronics and optoelectronics have been driven for decades by progress in the growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional materials and hold unexplored potential to overcome the aforementioned limitations—they form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve intersubband transitions with a nanometre-scale spatial resolution and electrostatically control the absorption. This work enables the exploitation of intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, light-emitting diodes and lasers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Van der Waals quantum wells—concept and theory.
Fig. 2: Measurement set-up and spatial absorption maps of a terraced WSe2 flake.
Fig. 3: Intersubband absorption spectra in few-layer WSe2.
Fig. 4: Doping dependence of electron and hole intersubband absorption.


  1. 1.

    Kroemer, H. Nobel lecture: Quasi-electric fields and band offset: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Alferov, Z. I. Nobel lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Hayashi, I., Panish, M. B., Foy, P. W. & Sumski, S. Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970).

    CAS  Article  Google Scholar 

  4. 4.

    Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    Bhattacharya, P. & Mi, Z. Quantum-dot optoelectronic devices. Proc. IEEE 95, 1723–1740 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Levine, B. F. Quantum well infrared photodetectors. J. Appl. Phys. 74, R1–R81 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    West, L. C. & Eglash, S. J. First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156–1158 (1985).

    CAS  Article  Google Scholar 

  10. 10.

    Helm, M. Intersubband semiconductor light sources: history, status, and future. In Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics (IEEE, 2004).

  11. 11.

    Liu, H. C., & Capasso, F. Intersubband Transitions in Quantum Wells: Physics and Device Applications (Elsevier, Amsterdam, 1999).

  12. 12.

    Warwick, C. A., Jan, W. Y., Ourmazd, A. & Harris, T. D. Does luminescence show semiconductor interfaces to be atomically smooth? Appl. Phys. Lett. 56, 2666–2668 (1990).

    CAS  Article  Google Scholar 

  13. 13.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, 461 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Xu, S. et al. Odd-integer quantum Hall states and giant spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).

    Article  Google Scholar 

  20. 20.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotech. 12, 223–227 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 1–15 (2016).

    Article  Google Scholar 

  22. 22.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–92 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoǧlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

    Article  Google Scholar 

  24. 24.

    Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in Hexagonal Boron Nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  Google Scholar 

  25. 25.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  26. 26.

    Ajayi, O. A. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 031011 (2017).

    Article  Google Scholar 

  27. 27.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–7 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. A 362, 787–805 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Ruiz-Tijerina, D. A., Danovich, M., Yelgel, C., Zólyomi, V. & Fal’ko, V. Hybrid k·p tight-binding model for subbands and infrared intersubband optics in few-layer films of transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 98, 035411 (2018).

    Article  Google Scholar 

  31. 31.

    Kormányos, A. et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 22001 (2014).

    Article  Google Scholar 

  32. 32.

    Sahin, H. et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 87, 165409 (2013).

    Article  Google Scholar 

  33. 33.

    Huang, W., Luo, X., Gan, C. K., Quek, S. Y. & Liang, G. Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 16, 10866 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Kane, M. J., Emeny, M. T., Apsley, N., Whitehouse, C. R. & Lee, D. Inter-sub-band absorption in GaAs/AlGaAs single quantum wells. Semicond. Sci. Technol. 3, 722–725 (1988).

    CAS  Article  Google Scholar 

  35. 35.

    Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Taubner, T., Hillenbrand, R. & Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Appl. Phys. Lett. 85, 5064–5066 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Govyadinov, A. A., Amenabar, I., Huth, F., Carney, P. S. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Govyadinov, A. A. et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 8, 6911–6921 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Manasreh, M. O. et al. Origin of the blueshift in the intersubband infrared absorption in GaAs/Al0.3Ga0.7As multiple quantum well. Phys. Rev. B 43, 9996–9999 (1991).

    CAS  Article  Google Scholar 

  40. 40.

    Allen, S. J., Tsui, D. C. & Vinter, B. On the absorption of infrared radiation by electrons in semiconductor inversion layers. Solid State Commun. 88, 425–428 (1993).

    Article  Google Scholar 

  41. 41.

    Unuma, T., Yoshita, M., Noda, T., Sakaki, H. & Akiyama, H. Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities. J. Appl. Phys. 93, 1586–1597 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Tsujino, S. et al. Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum-cascade structures. Appl. Phys. Lett. 86, 062113 (2005).

    Article  Google Scholar 

  43. 43.

    Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Kurman, Y. et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat. Photon. 12, 423–429 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Edelberg, D. et al. Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides. Preprint at (2018).

  46. 46.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–25 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).

    Article  Google Scholar 

  50. 50.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  Google Scholar 

Download references


We acknowledge discussions with A. Tredicucci about the general concept and S. Wall about the experimental measurement technique. We also thank A. Govyadinov for discussions about the thin-film inversion model. P.S. acknowledges financial support by a scholarship from the ‘la Caixa’ Banking Foundation. F.V. acknowledges financial support from Marie-Curie International Fellowship COFUND and ICFOnest programme. M.M. thanks the Natural Sciences and Engineering Research Council of Canada (PGSD3-426325-2012). K.-J.T. acknowledges support from a Mineco Young Investigator Grant (FIS2014-59639-JIN). F.H.L.K. acknowledges financial support from the Government of Catalonia through an SGR grant (2014-SGR-1535), and from the Spanish Ministry of Economy and Competitiveness through the ‘Severo Ochoa’; Programme for Centres of Excellence in R&D (SEV-2015-0522), support by the Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya and the Mineco grants Ramón y Cajal (RYC-2012-12281) and Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN). Furthermore, the research leading to these results received funding from the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship, European Reasearch Council (ERC) Starting grant (307806, CarbonLight) and ERC Synergy Grant Hetero2D. K.S.T. acknowledges financial support from The Center for Nanostructured Graphene sponsored by the Danish National Research Foundation (Project DNRF103) and the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 773122, LIMA).

Author information




P.S., S.L., K.S.T. and F.H.L.K. conceived and designed the experiment. P.S. and S.M. carried out the experiment. P.S. fabricated the samples and performed the data analysis. G.N. provided assistance in the sample fabrication. P.S., F.V., M.M., K.-J.T. and F.H.L.K. interpreted the results. S.L., M.D., D.A.R.-T., C.Y., V.F. and K.S.T. developed the theoretical calculations for intersubband transitions. P.S., F.V., S.L., M.M., K.J.T., M.D., D.A.R.-T., C.Y., V.F., K.S.T., R.H. and F.H.L.K. co-wrote the manuscript. All the authors contributed to discussions of the manuscript.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

R.H. is cofounder of and on the scientific advisory board of Neaspec GmbH, a company that produces scattering-type near-field scanning optical microscope systems, such as the one used in this study. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–16, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidt, P., Vialla, F., Latini, S. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nature Nanotech 13, 1035–1041 (2018).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research