Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood

Abstract

There is intense interest in quantifying the levels of microRNA because of its importance as a blood-borne biomarker. The challenge has been to develop methods that can monitor microRNA expression both over broad concentration ranges and in ultralow amounts directly in a patient’s blood. Here, we show that, through electric-field-induced reconfiguration of a network of gold-coated magnetic nanoparticles modified by probe DNA (DNA–Au@MNPs), it is possible to create a highly sensitive sensor for direct analysis of nucleic acids in samples as complex as whole blood. The sensor is the first to be able to detect concentrations of microRNA from 10 aM to 1 nM in unprocessed blood samples. It can distinguish small variations in microRNA concentrations in blood samples of mice with growing tumours. The ultrasensitive and direct detection of microRNA using an electrically reconfigurable DNA–Au@MNPs network makes the reported device a promising tool for cancer diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the steps involved in the proposed sensing strategy for detecting miRNA.
Fig. 2: Determination of the sensitivity for electrochemical measurement of the concentration of synthetic miR-21.
Fig. 3: Target concentration-dependence and reproducibility of change in the square wave current through 10 cycles of square wave voltammetry.
Fig. 4: Analysis of RNA samples extracted from human lung cancer cells.
Fig. 5: Detection of miR-21 in xenograft mouse model with human lung cancer.

Similar content being viewed by others

References

  1. Alhasan, A. H. et al. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc. Natl Acad. Sci. USA 113, 10655–10660 (2016).

    Article  CAS  Google Scholar 

  2. Mohammadi, M., Goodarzi, M., Jaafari, M. R., Mirzaei, H. R. & Mirzaei, H. Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma. Cancer Gene Ther. 23, 371–372 (2016).

    Article  CAS  Google Scholar 

  3. Nadal, E. et al. A novel serum 4-microRNA signature for lung cancer detection. Sci. Rep. 5, 12464 (2015).

    Article  Google Scholar 

  4. Schwarzenbach, H., Nishida, N., Calin, G. A. & Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11, 145–156 (2014).

    Article  CAS  Google Scholar 

  5. Wozniak, M. B. et al. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS ONE 10, e0125026 (2015).

    Article  Google Scholar 

  6. El-Khoury, V., Pierson, S., Kaoma, T., Bernardin, F. & Berchem, G. Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci. Rep. 6, 19529 (2016).

    Article  CAS  Google Scholar 

  7. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13, 358–369 (2012).

    Article  CAS  Google Scholar 

  8. Haun, J. B., Yoon, T. J., Lee, H. & Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 2, 291–304 (2010).

    Article  CAS  Google Scholar 

  9. Farina, N. H. et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J. Cell. Biochem. 115, 805–811 (2014).

    Article  CAS  Google Scholar 

  10. Labib, M., Sargent, E. H. & Kelley, S. O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 116, 9001–9090 (2016).

    Article  CAS  Google Scholar 

  11. Tavallaie, R., De Almeida, S. R. & Gooding, J. J. Toward biosensors for the detection of circulating microRNA as a cancer biomarker: an overview of the challenges and successes. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 7, 580–592 (2015).

    Article  CAS  Google Scholar 

  12. Tavallaie, R., Darwish, N., Gebala, M., Hibbert, D. B. & Gooding, J. J. The effect of interfacial design on the electrochemical detection of DNA and microRNA using methylene blue at low-density DNA films. ChemElectroChem 1, 165–171 (2014).

    Article  Google Scholar 

  13. Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016).

    Article  CAS  Google Scholar 

  14. Hsieh, K., Ferguson, B. S., Eisenstein, M., Plaxco, K. W. & Soh, H. T. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc. Chem. Res. 48, 911–920 (2015).

    Article  CAS  Google Scholar 

  15. Cardoso, A. R., Moreira, F. T. C., Fernandes, R. & Sales, M. G. F. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens. Bioelectron. 80, 621–630 (2016).

    Article  CAS  Google Scholar 

  16. Miao, P., Wang, B. D., Meng, F. Y., Yin, J. & Tang, Y. G. Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode. Bioconjug. Chem. 26, 602–607 (2015).

    Article  CAS  Google Scholar 

  17. Ramnani, P., Gao, Y. N., Ozsoz, M. & Mulchandani, A. Electronic detection of microRNA at attomolar level with high specificity. Anal. Chem. 85, 8061–8064 (2013).

    Article  CAS  Google Scholar 

  18. Soleymani, L., Fang, Z. C., Sargent, E. H. & Kelley, S. O. Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotech. 4, 844–848 (2009).

    Article  CAS  Google Scholar 

  19. Wang, Y., Zheng, D. L., Tan, Q. L., Wang, M. X. & Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotech. 6, 668–674 (2011).

    Article  CAS  Google Scholar 

  20. Bakshi, S. F. et al. Magnetic field-activated sensing of mRNA in living cells. J. Am. Chem. Soc. 139, 12117–12120 (2017).

    Article  CAS  Google Scholar 

  21. Goon, I. Y., Lai, L. M. H., Lim, M., Amal, R. & Gooding, J. J. ‘Dispersible electrodes’: a solution to slow response times of sensitive sensors. Chem. Commun. 46, 8821–8823 (2010).

    Article  CAS  Google Scholar 

  22. Lai, L. M. H. et al. Gold-coated magnetic nanoparticles as ‘dispersible electrodes’ – understanding their electrochemical performance. J. Electroanal. Chem. 656, 130–135 (2011).

    Article  CAS  Google Scholar 

  23. Chuah, K. et al. Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem. Commun. 48, 3503–3505 (2012).

    Article  CAS  Google Scholar 

  24. Markou, A., Zavridou, M. & Lianidou, E. S. miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer 7, 19–27 (2016).

    CAS  Google Scholar 

  25. Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).

    Article  CAS  Google Scholar 

  26. Selcuklu, S. D., Donoghue, M. T. A. & Spillane, C. miR-21 as a key regulator of oncogenic processes. Biochem. Soc. Trans. 37, 918–925 (2009).

    Article  CAS  Google Scholar 

  27. Yang, Y. et al. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther. 22, 23–29 (2015).

    Article  CAS  Google Scholar 

  28. Tavallaie, R., Darwish, N., Hibbert, D. B. & Gooding, J. J. Nucleic-acid recognition interfaces: how the greater ability of RNA duplexes to bend towards the surface influences electrochemical sensor performance. Chem. Commun. 51, 16526–16529 (2015).

    Article  CAS  Google Scholar 

  29. Lai, L. M. H. et al. The biochemiresistor: an ultrasensitive biosensor for small organic molecules. Angew. Chem. Int. Ed, 51, 6456–6459 (2012).

    Article  CAS  Google Scholar 

  30. Dejima, H., Iinuma, H., Kanaoka, R., Matsutani, N. & Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol. Lett. 13, 1256–1263 (2017).

    Article  CAS  Google Scholar 

  31. Fischer, L. M. et al. Gold cleaning methods for electrochemical detection applications. Microelectron. Eng. 86, 1282–1285 (2009).

    Article  CAS  Google Scholar 

  32. McCarroll, J. A. et al. TUBB3//βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res. 75, 415–425 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the UNSW Mark Wainwright Analytical Centre, Biological Resources Imaging Laboratory and Electron Microscope Unit. The authors also acknowledge assistance from K. Kimpton with in vivo mouse experiments. The authors acknowledge funding from the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (J.J.G. and M.K.; CE140100036), the ARC Laureate Fellowship (J.J.G.; FL150100060) programme, a National Health and Medical Research Council programme grant (M.K. and J.J.G.; APP1091261) and an NHMRC Principal Research Fellowship (M.K.; APP1119152). J.M. is supported by a Cancer Institute NSW Career Development Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.T. and J.J.G. designed the experiments, performed data interpretation and wrote the manuscript. R.T. performed the experiments and analysed the data. J.M. performed miR-21 inhibitor transfections and in vivo experiments, with assistance from M.L.G. N.A. and R.D.T. performed the electron microscopy. J.M. and M.K. provided scientific and technical support and data interpretation in biological experiments. W.S. and E.B. provided scientific support in the creation and investigation of the hypothesis for the mechanism of detection. D.B.H. provided scientific support in performing calculations required for the design of experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to John Justin Gooding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavallaie, R., McCarroll, J., Le Grand, M. et al. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nature Nanotech 13, 1066–1071 (2018). https://doi.org/10.1038/s41565-018-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0232-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing