Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome

Abstract

Predicting nanoparticle fate in aquatic environments requires mimicking of ecosystem complexity to observe the geochemical processes affecting their behaviour. Here, 12 nm Au nanoparticles were added weekly to large-scale freshwater wetland mesocosms. After six months, ~70% of Au was associated with the macrophyte Egeria densa, where, despite the thermodynamic stability of Au0 in water, the pristine Au0 nanoparticles were fully oxidized and complexed to cyanide, hydroxyls or thiol ligands. Extracted biofilms growing on E. densa leaves were shown to dissolve Au nanoparticles within days. The Au biodissolution rate was highest for the biofilm with the lowest prevalence of metal-resistant taxa but the highest ability to release cyanide, known to promote Au0 oxidation and complexation. Macrophytes and the associated microbiome thus form a biologically active system that can be a major sink for nanoparticle accumulation and transformations. Nanoparticle biotransformation in these compartments should not be ignored, even for nanoparticles commonly considered to be stable in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Speciation of Au associated to E. densa from mesocosms chronically exposed to Au-NPs for six months.
Fig. 2: Au biodissolution potentials of the naive and the pre-exposed biofilms.
Fig. 3: Cyanide emission by biofilms and Au biodissolution.

Similar content being viewed by others

References

  1. Schirmer, K. & Auffan, M. Nanotoxicology in the environment. Environ. Sci. Nano 2, 561–563 (2015).

    Article  Google Scholar 

  2. Lowry, G. V. et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46, 7027–7036 (2012).

    Article  CAS  Google Scholar 

  3. Auffan, M. et al. An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Sci. Rep. 4, 5608 (2014).

    Article  CAS  Google Scholar 

  4. Stegemeier, J. P., Avellan, A. & Lowry, G. V. Effect of initial speciation of copper- and silver-based nanoparticles on their long-term fate and phytoavailability in freshwater wetland mesocosms. Environ. Sci. Technol. 51, 12114–12122 (2017).

    Article  CAS  Google Scholar 

  5. Simonin, M. et al. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecol. Appl. https://doi.org/10.1002/eap.1742 (2018).

    Article  Google Scholar 

  6. Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotech. 4, 634–641 (2009).

    Article  CAS  Google Scholar 

  7. Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. (in the press).

  8. Ferry, J. L. et al. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotech. 4, 441–444 (2009).

    Article  CAS  Google Scholar 

  9. Burns, J. M. et al. Surface charge controls the fate of Au nanorods in saline estuaries. Environ. Sci. Technol. 47, 12844–12851 (2013).

    Article  CAS  Google Scholar 

  10. Glenn, J. B. & Klaine, S. J. Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes. Environ. Sci. Technol. 47, 10223–10230 (2013).

    Article  CAS  Google Scholar 

  11. Wray, A. T. & Klaine, S. J. Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. Environ. Toxicol. Chem. 34, 860–872 (2015).

    Article  CAS  Google Scholar 

  12. Lovern, S. B., Owen, H. A. & Klaper, R. Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology 2, 43–48 (2008).

    Article  CAS  Google Scholar 

  13. Ferreira, P., Fonte, E., Soares, M. E., Carvalho, F. & Guilhermino, L. Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat. Toxicol. 170, 89–103 (2016).

    Article  CAS  Google Scholar 

  14. Khan, F. R. et al. In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. Chemosphere 100, 97–104 (2014).

    Article  CAS  Google Scholar 

  15. Mouneyrac, C. et al. Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor. Environ. Sci. Pollut. Res. 21, 7899–7912 (2014).

    Article  CAS  Google Scholar 

  16. García-Cambero, J. P. et al. Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere 93, 1194–1200 (2013).

    Article  Google Scholar 

  17. Bar-Ilan, O., Albrecht, R. M., Fako, V. E. & Furgeson, D. Y. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5, 1897–1910 (2009).

    Article  CAS  Google Scholar 

  18. Hull, M. S. et al. Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. Environ. Sci. Technol. 45, 6592–6599 (2011).

    Article  CAS  Google Scholar 

  19. Renault, S. et al. Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull. 41, 116–126 (2008).

    Article  CAS  Google Scholar 

  20. Lee, B.-T. & Ranville, J. F. The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J. Hazard. Mater. 213–214, 434–439 (2012).

    Article  Google Scholar 

  21. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, New York, NY, 1966).

  22. Reith, F., Lengke, M. F., Falconer, D., Craw, D. & Southam, G. The geomicrobiology of gold. ISME J. 1, 567–584 (2007).

    Article  CAS  Google Scholar 

  23. Rea, M. A., Zammit, C. M. & Reith, F. Bacterial biofilms on gold grains—implications for geomicrobial transformations of gold. FEMS Microbiol. Ecol. 92, fiw082 (2016).

    Article  Google Scholar 

  24. Southam, G., Lengke, M. F., Fairbrother, L. & Reith, F. The biogeochemistry of gold. Elements 5, 303–307 (2009).

    Article  CAS  Google Scholar 

  25. Unrine, J. M. et al. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol. 44, 8308–8313 (2010).

    Article  CAS  Google Scholar 

  26. Judy, J. D., Unrine, J. M. & Bertsch, P. M. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 45, 776–781 (2011).

    Article  CAS  Google Scholar 

  27. Sabo-Attwood, T. et al. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6, 353–360 (2012).

    Article  CAS  Google Scholar 

  28. Dale, A. L. et al. Modeling nanomaterial environmental fate in aquatic systems. Environ. Sci. Technol. 49, 2587–2593 (2015).

    Article  CAS  Google Scholar 

  29. Garner, K. L., Suh, S. & Keller, A. A. Assessing the risk of engineered nanomaterials in the environment: development and application of the nanoFate model. Environ. Sci. Technol. 51, 5541–5551 (2017).

    Article  CAS  Google Scholar 

  30. Meesters, J. A., Koelmans, A. A., Quik, J. T., Hendriks, A. J. & van de Meent, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ. Sci. Technol. 48, 5726–5736 (2014).

    Article  CAS  Google Scholar 

  31. Unrine, J. M., Colman, B. P., Bone, A. J., Gondikas, A. P. & Matson, C. W. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ. Sci. Technol. 46, 6915–6924 (2012).

    Article  CAS  Google Scholar 

  32. Schippers, A. & Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 65, 319–321 (1999).

    CAS  Google Scholar 

  33. Aylmore, M. G. & Muir, D. M. Thiosulfate leaching of gold—a review. Miner. Eng. 14, 135–174 (2001).

    Article  CAS  Google Scholar 

  34. Dzombak, D. A., Ghosh, R. S. & Wong-Chong, G. M. Cyanide in Water and Soil: Chemistry, Risk, and Management (CRC Press, Boca Raton, FL, 2005).

  35. Reith, F. & McPhail, D. C. Effect of resident microbiota on the solubilization of gold in soil from the Tomakin Park Gold Mine, New South Wales, Australia. Geochim. Cosmochim. Acta 70, 1421–1438 (2006).

    Article  CAS  Google Scholar 

  36. Faramarzi, M. A. & Brandl, H. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol. Lett. 259, 47–52 (2006).

    Article  CAS  Google Scholar 

  37. Brandl, H., Lehmann, S., Faramarzi, M. A. & Martinelli, D. Biomobilization of silver, gold, and platinum from solid waste materials by HCNforming microorganisms. Hydrometallurgy 94, 14–17 (2008).

    Article  CAS  Google Scholar 

  38. Fischer, J. M., Reed-Andersen, T., Klug, J. L. & Chalmers, A. G. Spatial pattern of localized disturbance along a southeastern salt marsh tidal creek. Estuaries Coasts 23, 565–571 (2000).

    Article  Google Scholar 

  39. Dhir, B., Sharmila, P. & Saradhi, P. P. Potential of aquatic macrophytes for removing contaminants from the environment. Crit. Rev. Environ. Sci. Technol. 39, 754–781 (2009).

    Article  CAS  Google Scholar 

  40. Sabater, S. et al. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal. Bioanal. Chem. 387, 1425–1434 (2007).

    Article  CAS  Google Scholar 

  41. Baudrimont, M. et al. Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. Environ. Sci. Pollut. Res. 25, 11181–11191 (2018).

    Article  CAS  Google Scholar 

  42. Colman, B. P. et al. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ. Sci. Technol. 48, 5229–5236 (2014).

    Article  CAS  Google Scholar 

  43. Nicol, M. J., Fleming, C. A. & Paul, R. L. in The Extractive Metallurgy of Gold in South Africa (ed Stanley, G. G.) Ch. 15 (South African Institute of Mining and Metallurgy, Johannesburg, 1987).

  44. Glenn, J. B., White, S. A. & Klaine, S. J. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ. Toxicol. Chem. 31, 194–201 (2012).

    Article  CAS  Google Scholar 

  45. Marsden, J. & House, I. The Chemistry of Gold Extraction 2nd edn (SME, Littleton, CO, 2006).

  46. Lewis, G. & Shaw, C. F. III Competition of thiols and cyanide for gold (i). Inorg. Chem. 25, 58–62 (1986).

    Article  CAS  Google Scholar 

  47. Mishra, A. & Malik, A. Recent advances in microbial metal bioaccumulation. Crit. Rev. Environ. Sci. Technol. 43, 1162–1222 (2013).

    Article  CAS  Google Scholar 

  48. Yee, N., Benning, L. G., Phoenix, V. R. & Ferris, F. G. Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 38, 775–782 (2004).

    Article  CAS  Google Scholar 

  49. Stolz, J. F., Oremland, R. S., Paster, B. J., Dewhirst, F. E. & Vandamme, P. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) Ch. Sulfurospirillum (Wiley, New York, NY, 2015).

  50. Zheng, S., Wang, B., Li, Y., Liu, F. & Wang, O. Electrochemically active iron (iii)-reducing bacteria in coastal riverine sediments. J. Basic Microbiol. 57, 1045–1054 (2017).

    Article  CAS  Google Scholar 

  51. Milan, M. et al. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams. Aquat. Toxicol. 194, 195–207 (2018).

    Article  CAS  Google Scholar 

  52. Ouyang, F., Ji, M., Zhai, H., Dong, Z. & Ye, L. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures. Appl. Microbiol. Biotechnol. 100, 6881–6892 (2016).

    Article  CAS  Google Scholar 

  53. Wasi, S., Tabrez, S. & Ahmad, M. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ. Monit. Assess. 185, 8147–8155 (2013).

    Article  Google Scholar 

  54. Ebbs, S. Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 15, 231–236 (2004).

    Article  CAS  Google Scholar 

  55. Dubey, S. K. & Holmes, D. S. Biological cyanide destruction mediated by microorganisms. World J. Microbiol. Biotechnol. 11, 257–265 (1995).

    Article  CAS  Google Scholar 

  56. Yin, Y., Liu, J. & Jiang, G. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6, 7910–7919 (2012).

    Article  CAS  Google Scholar 

  57. Đurović, M. D., Bugarčić, Ž. D., Heinemann, F. W. & Eldik, Rvan Substitution versus redox reactions of gold(iii) complexes with l-cysteine, l-methionine and glutathione. Dalton Trans. 43, 3911–3921 (2014).

    Article  Google Scholar 

  58. Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

  59. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  60. Minakata, K., Nozawa, H., Gonmori, K., Suzuki, M. & Suzuki, O. Determination of cyanide, in urine and gastric content, by electrospray ionization tandem mass spectrometry after direct flow injection of dicyanogold. Anal. Chim. Acta 651, 81–84 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. M. Anderson and B. P. Colman for their help setting up, monitoring and collecting samples during the experiment, S. Marinakos for providing TEM characterization of the Au-NPs, A. Curinier for insights and B. Perrotta for analyses of Au concentrations on mesocosm biofilms. This work was supported by the National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-0830093 and DBI-1266252, Center for the Environmental Implications of NanoTechnology (CEINT). Funds for graduate student summer support was supplied by the Duke Wetland Center Endowment. Portions of this work were performed at the Stanford Synchrotron Radiation Lightsource (SSRL) on beamline 11-2, a Department of Energy supported facility.

Author information

Authors and Affiliations

Authors

Contributions

A.A., M.S., E.M., N.B., E.S.-S. and J.D.R. performed experiments and/or data analysis. A.A., M.S., E.S.B., N.K.G., M.R.W., J.M.U. and G.V.L. were involved in experimental design and writing. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gregory V. Lowry.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supporting information

Supplementary Figures 1–7, Supplementary Table 1

Supplementary dataset

Sequence file 1

Supplementary dataset

Sequence file 2

Supplementary dataset

Sequence file 3

Supplementary dataset

Sequence file 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avellan, A., Simonin, M., McGivney, E. et al. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nature Nanotech 13, 1072–1077 (2018). https://doi.org/10.1038/s41565-018-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0231-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing