Emerging hydrovoltaic technology

Abstract

Water contains tremendous energy in a variety of forms, but very little of this energy has yet been harnessed. Nanostructured materials can generate electricity on interaction with water, a phenomenon that we term the hydrovoltaic effect, which potentially extends the technical capability of water energy harvesting and enables the creation of self-powered devices. In this Review, starting by describing fundamental properties of water and of water–solid interfaces, we discuss key aspects pertaining to water–carbon interactions and basic mechanisms of harvesting water energy with nanostructured materials. Experimental advances in generating electricity from water flows, waves, natural evaporation and moisture are then reviewed to show the correlations in their basic mechanisms and the potential for their integration towards harvesting energy from the water cycle. We further discuss potential device applications of hydrovoltaic technologies, analyse main challenges in improving the energy conversion efficiency and scaling up the output power, and suggest prospects for developments of the emerging technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fundamental theories of water energy harvesting and water–solid interactions.
Fig. 2: Carbon nanomaterials and carbon–water interactions.
Fig. 3: Electricity generation related to electrokinetic effects.
Fig. 4: Vision of harvesting energy from the whole water cycle by carbon nanostructures.
Fig. 5: Potential device applications of water energy harvesting.

References

  1. 1.

    Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Dudley, B. Statistical Review of World Energy (BP, 2017).

  3. 3.

    Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15, 119–124 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Van der Heyden, F. H., Stein, D. & Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005). This paper reported the dependence of streaming currents on salt concentration of water flow in nanochannels and observed peculiar behaviour at the low-salt limit.

    Article  CAS  Google Scholar 

  5. 5.

    Van der Heyden, F. H., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6, 2232–2237 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    Daiguji, H., Yang, P., Szeri, A. J. & Majumdar, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4, 2315–2321 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    Sparreboom, W. V., Van Den Berg, A. & Eijkel, J. Principles and applications of nanofluidic transport. Nat. Nanotech. 4, 713–720 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Sun, H., Xu, Z. & Gao, C. Multifunctional, ultra‐flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    Král, P. & Shapiro, M. Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131 (2001).

    Article  Google Scholar 

  15. 15.

    Cohen, A. E. Carbon nanotubes provide a charge. Science 300, 1235–1236 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Zhao, Y. et al. Individual water‐filled single‐walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008). This paper demonstrated the first experimental evidence of electric voltage induced by flowing water inside a single-walled carbon nanotube.

    CAS  Article  Google Scholar 

  17. 17.

    Yin, J. et al. Waving potential in graphene. Nat. Commun. 5, 3582 (2014). This paper was the first to demonstrate electricity generation in a graphene sheet by moving a liquid–gas boundary along the sheet.

    CAS  Article  Google Scholar 

  18. 18.

    Yin, J. et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotech. 9, 378–383 (2014).This paper was the first experimental work to show that moving a droplet of ionic water along graphene generates electric voltage in the graphene.

    CAS  Article  Google Scholar 

  19. 19.

    Liu, Z. Advances in electrokinetics revealed in graphene. Natl Sci. Rev. 2, 17–18 (2015).

    Article  Google Scholar 

  20. 20.

    Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 193, 120–145 (1948).

    CAS  Article  Google Scholar 

  21. 21.

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–323 (2009).

    Article  Google Scholar 

  22. 22.

    Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotech. 12, 317–321 (2017).This paper was the first to realize energy harvesting from natural water evaporation using carbon nanostructured materials.

    CAS  Article  Google Scholar 

  23. 23.

    Luque, A. & Hegedus, S. (eds) Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2011).

  24. 24.

    Gregory, J., Clary, D., Liu, K., Brown, M. & Saykally, R. The water dipole moment in water clusters. Science 275, 814–817 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water (Oxford Univ. Press, Oxford, 1969).

    Google Scholar 

  26. 26.

    Feyereisen, M. W., Feller, D. & Dixon, D. A. Hydrogen bond energy of the water dimer. J. Chem. Phys. 100, 2993–2997 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, Cambridge, MA, 2011).

    Google Scholar 

  28. 28.

    Eigen, M. & Maeyer, L. D. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. Lond. A 247, 505–533 (1958).

    CAS  Article  Google Scholar 

  29. 29.

    Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    Habershon, S., Markland, T. E. & Manolopoulos, D. E. Competing quantum effects in the dynamics of a flexible water model. J. Chem. Phys. 131, 024501 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    Fang, W., Richardson, J. O., Chen, J., Li, X.-Z. & Michaelides, A. Simultaneous deep tunneling and classical hopping for hydrogen diffusion on metals. Phys. Rev. Lett. 119, 126001 (2017).

    Article  Google Scholar 

  33. 33.

    Chen, J. et al. Quantum simulation of low-temperature metallic liquid hydrogen. Nat. Commun. 4, 2064 (2013).

    Article  CAS  Google Scholar 

  34. 34.

    Blum, W. et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc. Natl Acad. Sci. USA 107, 7473–7478 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Zheng, J.-M., Chin, W.-C., Khijniak, E., Khijniak, E. & Pollack, G. H. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127, 19–27 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 5–308 (2002).

    Article  Google Scholar 

  38. 38.

    Block, L. P. A double layer review. Astrophys. Space Sci. 55, 59–83 (1978).

    Article  Google Scholar 

  39. 39.

    Carnie, S. L. & Torrie, G. M. The statistical mechanics of the electrical double layer. Adv. Chem. Phys. 56, 141–253 (2007).

    Google Scholar 

  40. 40.

    Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441–501 (1947).

    CAS  Article  Google Scholar 

  41. 41.

    Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications (Academic Press, Cambridge, MA, 2013).

  42. 42.

    Gustafsson, J., Mikkola, P., Jokinen, M. & Rosenholm, J. B. The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions. Colloids Surf. A 175, 349–359 (2000).

    CAS  Article  Google Scholar 

  43. 43.

    Maier, J. Thermodynamic aspects and morphology of nano-structured ion conductors: aspects of nano-ionics Part I. Solid State Ionics 154, 291–301 (2002).

    Article  Google Scholar 

  44. 44.

    Zhang, Z. et al. Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 324–350 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622 (1947).

    CAS  Article  Google Scholar 

  46. 46.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Koga, K., Tanaka, H. & Zeng, X. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 408, 564–567 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Koga, K., Gao, G., Tanaka, H. & Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Liu, Y. & Wang, Q. Transport behavior of water confined in carbon nanotubes. Phys. Rev. B 72, 085420 (2005).

    Article  CAS  Google Scholar 

  50. 50.

    Alexiadis, A. & Kassinos, S. Molecular simulation of water in carbon nanotubes. Chem. Rev. 108, 5014–5034 (2008).

    CAS  Article  Google Scholar 

  51. 51.

    Yuan, Q. & Zhao, Y.-P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 6374–6376 (2009).

    CAS  Article  Google Scholar 

  52. 52.

    Dellago, C., Naor, M. M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90, 105902 (2003).

    Article  CAS  Google Scholar 

  53. 53.

    Jiang, K., Li, Q. & Fan, S. Spinning continuous carbon nanotube yarns. Nature 419, 801–801 (2002).

    CAS  Article  Google Scholar 

  54. 54.

    Zhang, M., Atkinson, K. R. & Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    Donnet, J.-B. Carbon Black: Science and Technology (CRC, Boca Raton, 1993).

    Google Scholar 

  56. 56.

    Yang, S. et al. Mechanism of electric power generation from ionic droplet motion on polymer supported graphene. Preprint at https://arxiv.org/abs/1801.07878 (2018).

  57. 57.

    Reuss, F. F. Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Natur. Moscou 2, 327–337 (1809).

    Google Scholar 

  58. 58.

    Reuss, F. Charge-induced flow. Proc. Imperial Soc. Naturalists Mosc. 3, 327–344 (1809).

    Google Scholar 

  59. 59.

    Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  Google Scholar 

  60. 60.

    Graetz, M. V. S. I. Handbuch der Elektrizitat und des Magnetismus. Leipzig 11, 366 (1914).

    Google Scholar 

  61. 61.

    Hunter, R. J. Foundations of Colloid Science (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  62. 62.

    Van der Heyden, F. H., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 7, 1022–1025 (2007).

    Article  CAS  Google Scholar 

  63. 63.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Article  Google Scholar 

  64. 64.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    CAS  Article  Google Scholar 

  66. 66.

    Thomas, J. A. & McGaughey, A. J. Water flow in carbon nanotubes: transition to subcontinuum transport. Phys. Rev. Lett. 102, 184502 (2009).

    Article  CAS  Google Scholar 

  67. 67.

    Ren, Y. & Stein, D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19, 195707 (2008).

    Article  CAS  Google Scholar 

  68. 68.

    Author, A. Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip 7, 1234–1237 (2007).

    Article  CAS  Google Scholar 

  69. 69.

    Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89, 012113 (2014).

    Article  CAS  Google Scholar 

  70. 70.

    Munshi, F. & Chakraborty, S. Hydroelectrical energy conversion in narrow confinements in the presence of transverse magnetic fields with electrokinetic effects. Phys. Fluids 21, 122003 (2009).

    Article  CAS  Google Scholar 

  71. 71.

    Nguyen, T., Xie, Y., de Vreede, L. J., van den Berg, A. & Eijkel, J. C. T. Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip 13, 3210–3216 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    Berli, C. L. A. Electrokinetic energy conversion in microchannels using polymer solutions. J. Colloid Interface Sci. 349, 446–448 (2010).

    CAS  Article  Google Scholar 

  73. 73.

    Gillespie, D. High energy conversion efficiency in nanofluidic channels. Nano Lett. 12, 1410–1416 (2012).

    CAS  Article  Google Scholar 

  74. 74.

    Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Article  Google Scholar 

  75. 75.

    Guo, W. et al. Bio‐inspired two‐dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 25, 6064–6068 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  Article  Google Scholar 

  77. 77.

    Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS  Article  Google Scholar 

  78. 78.

    Kwak, S. S. et al. Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano 10, 7297–7302 (2016).

    CAS  Article  Google Scholar 

  79. 79.

    Zhong, H. et al. Graphene‐piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 27, 1104226 (2017).

    Google Scholar 

  80. 80.

    Zhong, H. et al. Two dimensional graphene nanogenerator by Coulomb dragging: moving van der Waals heterostructure. Appl. Phys. Lett. 106, 243903 (2015).

    Article  CAS  Google Scholar 

  81. 81.

    Cohen, A. E., Ghosh, S., Sood, A. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003). This paper showed that flowing water over CNT powder filled in a gap between two electrodes could induce a millivolt voltage.

    Article  CAS  Google Scholar 

  82. 82.

    Ghosh, S., Sood, A. K., Ramaswamy, S. & Kumar, N. Flow-induced voltage and current generation in carbon nanotubes. Phys. Rev. B 70, 205423 (2004).

    Article  CAS  Google Scholar 

  83. 83.

    Dhiman, P. et al. Harvesting energy from water flow over graphene. Nano Lett. 11, 3123–3127 (2011).

    CAS  Article  Google Scholar 

  84. 84.

    Yin, J., Zhang, Z., Li, X., Zhou, J. & Guo, W. Harvesting energy from water flow over graphene? Nano Lett. 12, 1736–1741 (2012). This paper revealed for the first time important role of bare electrodes in generating electricity in carbon nanomaterials immersed in flowing water.

    CAS  Article  Google Scholar 

  85. 85.

    Newaz, A. K. M., Markov, D. A., Prasai, D. & Bolotin, K. I. Graphene transistor as a probe for streaming potential. Nano Lett. 12, 2931–2935 (2012).

    CAS  Article  Google Scholar 

  86. 86.

    Liu, J., Dai, L. & Baur, J. W. Multiwalled carbon nanotubes for flow-induced voltage generation. J. Appl. Phys. 101, 064312 (2007).

    Article  CAS  Google Scholar 

  87. 87.

    Lee, S. H., Kim, D., Kim, S. & Han, C.-S. Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes. Appl. Phys. Lett. 99, 104103 (2011).

    Article  CAS  Google Scholar 

  88. 88.

    Persson, B., Tartaglino, U., Tosatti, E. & Ueba, H. Electronic friction and liquid-flow-induced voltage in nanotubes. Phys. Rev. B 69, 235410 (2004).

    Article  CAS  Google Scholar 

  89. 89.

    Cavusoglu, A.-H., Chen, X., Gentine, P. & Sahin, O. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017).

    Article  CAS  Google Scholar 

  90. 90.

    Ding, T. et al. All‐printed porous carbon film for electricity generation from evaporation‐driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).

    Article  CAS  Google Scholar 

  91. 91.

    Zhao, F., Liang, Y., Cheng, H., Jiang, L. & Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    Liang, Y. et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 11, 1730–1735 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Liu, K. et al. Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 128, 8135–8139 (2016).

    Article  Google Scholar 

  95. 95.

    Xue, J. et al. Vapor‐activated power generation on conductive polymer. Adv. Funct. Mater. 26, 8784–8792 (2016). Refs 91–95 realized power generation based on moisture variation across carbon nanomaterials with a gradient of chemical groups.

    CAS  Article  Google Scholar 

  96. 96.

    Shen, D. et al. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, 1705925 (2018).

    Article  CAS  Google Scholar 

  97. 97.

    Xu, T. et al. Electric power generation through the direct interaction of pristine graphene‐oxide with water molecules. Small 14, 1704473 (2018).

    Article  CAS  Google Scholar 

  98. 98.

    Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    CAS  Article  Google Scholar 

  99. 99.

    Kim, H. & Kwon, S. Water-responsive polymer composites on the move. Science 339, 150–151 (2013).

    CAS  Article  Google Scholar 

  100. 100.

    Arazoe, H. et al. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 15, 1084–1089 (2016).

    CAS  Article  Google Scholar 

  101. 101.

    De Haan, L. T., Verjans, J. M., Broer, D. J., Bastiaansen, C. W. & Schenning, A. P. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 136, 10585–10588 (2014).

    Article  CAS  Google Scholar 

  102. 102.

    Zhao, Q. et al. Sensing solvents with ultrasensitive porous poly (ionic liquid) actuators. Adv. Mater. 27, 2913–2917 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotech. 9, 137–141 (2014).

    CAS  Article  Google Scholar 

  104. 104.

    Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6 (2015).

  105. 105.

    Cheng, H. et al. Graphene fibers with predetermined deformation as moisture‐triggered actuators and robots. Angew. Chem. Int. Ed. 52, 10482–10486 (2013).

    CAS  Article  Google Scholar 

  106. 106.

    Cheng, H. et al. Moisture‐activated torsional graphene‐fiber motor. Adv. Mater. 26, 2909–2913 (2014).

    CAS  Article  Google Scholar 

  107. 107.

    Li, X. et al. Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energy 32, 125–129 (2017).

    CAS  Article  Google Scholar 

  108. 108.

    Levenspiel, O. & de Nevers, N. The osmotic pump. Science 183, 157–160 (1974).

    CAS  Article  Google Scholar 

  109. 109.

    Weinstein, J. N. & Leitz, F. B. Electric power from differences in salinity: the dialytic battery. Science 191, 557–559 (1976).

    CAS  Article  Google Scholar 

  110. 110.

    Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    CAS  Article  Google Scholar 

  111. 111.

    Brogioli, D. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 103, 058501 (2009).

    Article  CAS  Google Scholar 

  112. 112.

    Brogioli, D., Zhao, R. & Biesheuvel, P. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes. Energy Environ. Sci. 4, 772–777 (2011).

    CAS  Article  Google Scholar 

  113. 113.

    La Mantia, F., Pasta, M., Deshazer, H. D., Logan, B. E. & Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810–1813 (2011).

    Article  CAS  Google Scholar 

  114. 114.

    Jia, Z., Wang, B., Song, S. & Fan, Y. Blue energy: current technologies for sustainable power generation from water salinity gradient. Renew. Sust. Energy Rev. 31, 91–100 (2014).

    Article  Google Scholar 

  115. 115.

    Lin, Z. H., Cheng, G., Lin, L., Lee, S. & Wang, Z. L. Water–solid surface contact electrification and its use for harvesting liquid‐wave energy. Angew. Chem. Int. Ed. 52, 12545–12549 (2013).

    CAS  Article  Google Scholar 

  116. 116.

    Park, J., Yang, Y., Kwon, S.-H. & Kim, Y. S. Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion. J. Phys. Chem. Lett. 6, 745–749 (2015).

    CAS  Article  Google Scholar 

  117. 117.

    Han, M. et al. Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection. J. Mater. Chem. A 3, 7382–7388 (2015).

    CAS  Article  Google Scholar 

  118. 118.

    Wang, Z. L. Catch wave power in floating nets. Nature 542, 159–160 (2017).

    Article  CAS  Google Scholar 

  119. 119.

    Moon, J. K., Jeong, J., Lee, D. & Pak, H. K. Electrical power generation by mechanically modulating electrical double layers. Nat. Commun. 4, 2485 (2013).

    Article  CAS  Google Scholar 

  120. 120.

    Liu, K. et al. Self-powered multimodal temperature and force sensor based on a liquid droplet. Angew. Chem. Int. Ed. 128, 16096–16100 (2016).

    Article  Google Scholar 

  121. 121.

    Kwon, S.-H. et al. An effective energy harvesting method from a natural water motion active transducer. Energy Environ. Sci. 7, 3279–3283 (2014).

    CAS  Article  Google Scholar 

  122. 122.

    Kim, S. H. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 357, 773–778 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Hu, R. et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10, 838–846 (2010).

    CAS  Article  Google Scholar 

  124. 124.

    Tang, Q., Wang, X., Yang, P. & He, B. A solar cell that is triggered by sun and rain. Angew. Chem. Int. Ed. 55, 5243–5246 (2016).

    CAS  Article  Google Scholar 

  125. 125.

    Zhong, H. et al. Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon 105, 199–204 (2016). Refs 124 and 125 demonstrated integration of hydrovoltaic devices with solar cells for realizing all-weather power supply.

    CAS  Article  Google Scholar 

  126. 126.

    Xu, Y. et al. A one-dimensional fluidic nanogenerator with a high power conversion efficiency. Angew. Chem. Int. Ed. 56, 12940–12945 (2017).

    CAS  Article  Google Scholar 

  127. 127.

    Zhang, P., Li, J., Lv, L., Zhao, Y. & Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    CAS  Article  Google Scholar 

  128. 128.

    Lou, J. et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 8, 14628–14636 (2016).

    CAS  Article  Google Scholar 

  129. 129.

    Yin, J. et al. Enhanced gas-flow-induced voltage in graphene. Appl. Phys. Lett. 99, 073103 (2011).

    Article  CAS  Google Scholar 

  130. 130.

    Sood, A. & Ghosh, S. Direct generation of a voltage and current by gas flow over carbon nanotubes and semiconductors. Phys. Rev. Lett. 93, 086601 (2004).

    CAS  Article  Google Scholar 

  131. 131.

    Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon 10, 393–398 (2016).

    CAS  Article  Google Scholar 

  132. 132.

    Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    CAS  Article  Google Scholar 

  133. 133.

    Liu, Y. et al. A bioinspired, reusable, paper‐based system for high‐performance large‐scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

    CAS  Article  Google Scholar 

  134. 134.

    Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotech. 13, 489–495 (2018).

    CAS  Article  Google Scholar 

  135. 135.

    Ito, Y. et al. Multifunctional porous graphene for high‐efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

    CAS  Article  Google Scholar 

  136. 136.

    Ostroverkhov, V., Waychunas, G. A. & Shen, Y. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett. 94, 046102 (2005).

    Article  CAS  Google Scholar 

  137. 137.

    Ji, N., Ostroverkhov, V., Chen, C.-Y. & Shen, Y.-R. Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains. J. Am. Chem. Soc. 129, 10056–10057 (2007).

    CAS  Article  Google Scholar 

  138. 138.

    Ji, N., Ostroverkhov, V., Tian, C. & Shen, Y. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008).

    CAS  Article  Google Scholar 

  139. 139.

    Tian, C. S. & Shen, Y. R. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proc. Natl Acad. Sci. USA 106, 15148–15153 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 51535005, 11772153, 51472117, 51702159), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-0416K01, MCMS-0416G01, MCMS-0417G01), the Fundamental Research Funds for the Central Universities (NP2017101, NE2018002), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the support of the Sugon Scholarship. Z.Z. also acknowledges the support of Youth Thousand Talents Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, X., Yin, J. et al. Emerging hydrovoltaic technology. Nature Nanotech 13, 1109–1119 (2018). https://doi.org/10.1038/s41565-018-0228-6

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research