Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials

This article has been updated

Abstract

The dynamic control of thermal transport properties in solids must contend with the fact that phonons are inherently broadband. Thus, efforts to create reversible thermal conductivity switches have resulted in only modest on/off ratios, since only a relatively narrow portion of the phononic spectrum is impacted. Here, we report on the ability to modulate the thermal conductivity of topologically networked materials by nearly a factor of four following hydration, through manipulation of the displacement amplitude of atomic vibrations. By varying the network topology, or crosslinked structure, of squid ring teeth-based bio-polymers through tandem-repetition of DNA sequences, we show that this thermal switching ratio can be directly programmed. This on/off ratio in thermal conductivity switching is over a factor of three larger than the current state-of-the-art thermal switch, offering the possibility of engineering thermally conductive biological materials with dynamic responsivity to heat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and thermal conductivity of TR protein-based materials.
Fig. 2: Thermal and mechanical properties in varying states.
Fig. 3: QENS.
Fig. 4: Metrics of thermal conductivity switching.

Similar content being viewed by others

Change history

  • 31 August 2018

    When this Article was originally published, only the front page of the associated Supplementary Information file was uploaded. This has now been replaced with the full Supplementary Information file.

References

  1. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Article  Google Scholar 

  2. Gou, X., Ping, H., Ou, Q., Xiao, H. & Qing, S. A novel thermoelectric generation system with thermal switch. Energy Procedia 61, 1713–1717 (2014).

    Article  Google Scholar 

  3. Zhang, X. & Zhao, L.-D. Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1, 92–105 (2015).

    Article  Google Scholar 

  4. DiPirro, M. J. & Shirron, P. J. Heat switches for ADRs. Cryogenics 62, 172–176 (2014).

    Article  CAS  Google Scholar 

  5. Jia, Y. & Ju, Y. S. A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).

    Article  Google Scholar 

  6. Shin, J. et al. Thermally functional liquid crystal networks by magnetic field driven molecular orientation. ACS Macro Lett. 5, 955–960 (2016).

    Article  CAS  Google Scholar 

  7. Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    Article  CAS  Google Scholar 

  8. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    Article  CAS  Google Scholar 

  9. Zhang, T. & Luo, T. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers. ACS Nano 7, 7592 (2013).

    Article  CAS  Google Scholar 

  10. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotech. 5, 251–255 (2010).

    Article  CAS  Google Scholar 

  11. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotech. 9, 384–390 (2014).

    Article  CAS  Google Scholar 

  12. Kim, G.-H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  CAS  Google Scholar 

  13. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    Article  CAS  Google Scholar 

  14. Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).

    Article  CAS  Google Scholar 

  15. Sariola, V. et al. Segmented molecular design of self-healing proteinaceous materials. Sci. Rep. 5, 13482 (2015).

    Article  Google Scholar 

  16. Vural, M. et al. Programmable molecular composites of tandem proteins with graphene oxide for efficient bimorph actuators. Carbon 118, 404–412 (2017).

    Article  CAS  Google Scholar 

  17. Demirel, M. C., Cetinkaya, M., Pena-Francesch, A. & Jung, H. Recent advances in nanoscale bioinspired materials. Macromol. Biosci. 15, 300–311 (2015).

    Article  CAS  Google Scholar 

  18. Pena-Francesch, A. et al. Materials fabrication from native and recombinant thermoplastic squid proteins. Adv. Funct. Mater. 24, 7401–7409 (2014).

    Article  CAS  Google Scholar 

  19. Jung, H. et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins. Proc. Natl Acad. Sci. USA 113, 6478–6483 (2016).

    Article  CAS  Google Scholar 

  20. George, M. C., Rodriguez, M. A., Kent, M. S., Brennecka, G. L. & Hopkins, P. E. Thermal conductivity of self-assembling symmetric block copolymer thin films of polystyrene-block-poly(methyl methacrylate). J. Heat Transfer 138, 024505 (2016).

    Article  Google Scholar 

  21. Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G. & Braun, P. V. Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

    Article  Google Scholar 

  22. Foley, B. M. et al. Protein thermal conductivity measured in the solid state reveals anharmonic interactions of vibrations in a fractal structure. J. Phys. Chem. Lett. 5, 1077–1082 (2014).

    Article  CAS  Google Scholar 

  23. Ghossoub, M. G., Lee, J.-H., Baris, O. T., Cahill, D. G. & Sinha, S. Percolation of thermal conductivity in amorphous fluorocarbons. Phys. Rev. B 82, 195441 (2010).

    Article  Google Scholar 

  24. Einstein, A. Elementary observations on thermal molecular motion in solids. Annalen der Physik 35, 679–694 (1911).

    CAS  Google Scholar 

  25. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

  26. Rashidi, V., Coyle, E. J., Sebeck, K., Kieffer, J. & Pipe, K. P. Thermal conductance in cross-linked polymers: effects of non-bonding interactions. J. Phys. Chem. B 121, 4600–4609 (2017).

    Article  CAS  Google Scholar 

  27. Pena-Francesch, A. et al. Pressure sensitive adhesion of an elastomeric protein complex extracted from squid ring teeth. Adv. Funct. Mater. 24, 6227–6233 (2014).

    Article  CAS  Google Scholar 

  28. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, NY, 1953).

  29. Treloar, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, New York, NY, 1975).

    Google Scholar 

  30. Atilgan, A. R. et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001).

    Article  CAS  Google Scholar 

  31. Pena-Francesch, A. et al. Mechanical properties of tandem-repeat proteins are governed by network defects. ACS Biomater. Sci. Eng. 4, 884–891 (2018).

    Article  CAS  Google Scholar 

  32. Sakai, V. G. & Arbe, A. Quasielastic neutron scattering in soft matter. Curr. Opin. Colloid Interface Sci. 14, 381–390 (2009).

    Article  CAS  Google Scholar 

  33. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).

    Article  CAS  Google Scholar 

  34. Gabel, F. et al. Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 35, 327–367 (2002).

    Article  CAS  Google Scholar 

  35. Gordon, M. & Taylor, J. S. Ideal copolymers and the second-order transitions of synthetic rubbers. i. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952).

    Article  CAS  Google Scholar 

  36. Volino, F. & Dianoux, A. J. Neutron incoherent scattering law for diffusion in a potential of spherical symmetry: general formalism and application to diffusion inside a sphere. Mol. Phys. 41, 271–279 (1980).

    Article  CAS  Google Scholar 

  37. Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48, 581–588 (1993).

    Article  Google Scholar 

  38. Larkin, J. M. & McGaughey, A. J. H. Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys. Rev. B 89, 144303 (2014).

    Article  Google Scholar 

  39. Shenogin, S., Bodapati, A., Keblinski, P. & McGaughey, A. J. H. Predicting the thermal conductivity of inorganic and polymeric glasses: the role of anharmonicity. J. Appl. Phys. 105, 034906 (2009).

    Article  Google Scholar 

  40. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715–1731 (1999).

    Article  CAS  Google Scholar 

  41. Feldman, J. L., Kluge, M. D., Allen, P. B. & Wooten, F. Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon. Phys. Rev. B 48, 12589 (1993).

    Article  CAS  Google Scholar 

  42. Feldman, J. L., Allen, P. B. & Bickham, S. R. Numerical study of low-frequency vibrations in amorphous silicon. Phys. Rev. B 59, 3551 (1999).

    Article  CAS  Google Scholar 

  43. Meyer, A., Dimeo, R. M., Gehring, P. M. & Neumann, D. A. The high-flux backscattering spectrometer at the NIST Center for Neutron Research. Rev. Sci. Instrum. 74, 2759–2777 (2003).

    Article  CAS  Google Scholar 

  44. Copley, J. R. D. & Cook, J. C. The Disk Chopper Spectrometer at NIST: a new instrument for quasielastic neutron scattering studies. Chem. Phys. 292, 477–485 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.A.T. and P.E.H. acknowledge support from the Office of Naval Research (grant no. N00014-15-12769). M.C.D., B.D.A., A.P.-F. and H.J. were supported by the Army Research Office (grant no. W911NF-16-1-0019) and the Materials Research Institute of Pennsylvania State University. Access to the HFBS was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Science Foundation and NIST under agreement no. DMR-1508249. Certain commercial material suppliers are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

J.A.T. and A.P.-F. contributed equally to this work. P.E.H. and M.C.D. conceived the idea and supervised the research. J.A.T. performed the TDTR and TDBS measurements/analysis. J.A.T performed the thermal analysis. A.P.-F. fabricated the protein films and performed the rheology, structural and mechanical analysis and temperature-modulated differential scanning calorimetry measurements. A.P.-F. performed the neutron scattering measurements in collaboration with M.T. H.J. worked on the cloning, recombinant expression and purification of proteins under the supervision of B.D.A. All authors contributed to writing and revising the manuscript, and agreed on the final content of the manuscript.

Corresponding author

Correspondence to Patrick E. Hopkins.

Ethics declarations

Competing interests

The Penn State Research Foundation and the University of Virginia Patent Foundation have applied for a US provisional patent, application no. 62/711,010, filed 27 July 2018, related to the structural protein-based thermal switch produced in this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomko, J.A., Pena-Francesch, A., Jung, H. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nature Nanotech 13, 959–964 (2018). https://doi.org/10.1038/s41565-018-0227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0227-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research