Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics


Wearable and implantable devices require conductive, stretchable and biocompatible materials. However, obtaining composites that simultaneously fulfil these requirements is challenging due to a trade-off between conductivity and stretchability. Here, we report on Ag–Au nanocomposites composed of ultralong gold-coated silver nanowires in an elastomeric block-copolymer matrix. Owing to the high aspect ratio and percolation network of the Ag–Au nanowires, the nanocomposites exhibit an optimized conductivity of 41,850 S cm−1 (maximum of 72,600 S cm−1). Phase separation in the Ag–Au nanocomposite during the solvent-drying process generates a microstructure that yields an optimized stretchability of 266% (maximum of 840%). The thick gold sheath deposited on the silver nanowire surface prevents oxidation and silver ion leaching, making the composite biocompatible and highly conductive. Using the nanocomposite, we successfully fabricate wearable and implantable soft bioelectronic devices that can be conformally integrated with human skin and swine heart for continuous electrophysiological recording, and electrical and thermal stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of microstructured Ag–Au nanocomposite.
Fig. 2: Characterization and oxidation resistance of the Ag–Au nanowire.
Fig. 3: Effect of phase separation on electrical and mechanical properties.
Fig. 4: Biocompatibility of Ag–Au nanocomposite in vitro and in vivo.
Fig. 5: Wearable skin-like bioelectronics using the Ag–Au nanocomposite.
Fig. 6: Ag–Au nanocomposite-based implantable cardiac mesh for monitoring and stimulating swine heart in vivo.

Similar content being viewed by others


  1. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  Google Scholar 

  2. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotech. 7, 803–809 (2012).

    Article  CAS  Google Scholar 

  3. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  CAS  Google Scholar 

  4. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  5. Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotech. 9, 397–404 (2014).

    Article  CAS  Google Scholar 

  6. Choi, M. K. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  CAS  Google Scholar 

  7. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotech. 6, 788–792 (2011).

    Article  CAS  Google Scholar 

  8. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotech. 12, 907–913 (2017).

    Article  CAS  Google Scholar 

  9. You, I. et al. Stretchable E-skin apexcardiogram sensor. Adv. Mater. 28, 6359–6364 (2016).

    Article  CAS  Google Scholar 

  10. Gong, S. et al. Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1, 1400063 (2015).

    Article  Google Scholar 

  11. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8, 344ra386 (2016).

    Google Scholar 

  12. Lu, C. et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3, e1600955 (2017).

    Article  Google Scholar 

  13. Lee, P. et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012).

    Article  CAS  Google Scholar 

  14. Choi, S. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015).

    Article  CAS  Google Scholar 

  15. McShan, D., Ray, P. C. & Yu, H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22, 116–127 (2014).

    Article  CAS  Google Scholar 

  16. Yang, M., Hood, Z. D., Yang, X., Chi, M. & Xia, Y. Facile synthesis of Ag@Au core–sheath nanowires with greatly improved stability against oxidation. Chem. Commun. 53, 1965–1968 (2017).

    Article  CAS  Google Scholar 

  17. Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).

    Article  Google Scholar 

  18. Chen, Y., Ouyang, Z., Gu, M. & Cheng, W. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv. Mater. 25, 80–85 (2013).

    Article  CAS  Google Scholar 

  19. Andres, L. J. et al. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 26, 265201 (2015).

    Article  Google Scholar 

  20. Sun, Y., Yin, Y., Mayers, B. T., Herricks, T. & Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002).

    Article  CAS  Google Scholar 

  21. Liu, H. et al. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv. Funct. Mater. 25, 5435–5443 (2015).

    Article  CAS  Google Scholar 

  22. Yang, Y., Liu, J., Fu, Z. W. & Qin, D. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 136, 8153–8156 (2014).

    Article  CAS  Google Scholar 

  23. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).

    Article  CAS  Google Scholar 

  24. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotech. 11, 566–572 (2016).

    Article  Google Scholar 

  25. Lee, H., Hong, Y. J., Baik, S., Hyeon, T. & Kim, D. H. Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, e1701150 (2018).

    Article  Google Scholar 

  26. Li, J. et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007).

    Article  CAS  Google Scholar 

  27. Knite, M., Hill, A. J., Pas, S. J., Teteris, V. & Zavickis, J. Effects of plasticizer and strain on the percolation threshold in polyisoprene–carbon nanocomposites: positron annihilation lifetime spectroscopy and electrical resistance measurements. Mater. Sci. Eng. C 26, 771–775 (2006).

    Article  CAS  Google Scholar 

  28. Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  29. Dong, J., Abukhdeir, N. M. & Goldthorpe, I. A. Simple assembly of long nanowires through substrate stretching. Nanotechnology 26, 485302 (2015).

    Article  Google Scholar 

  30. Wang, L.-F., Liu, J.-Q., Yang, B. & Yang, C.-S. PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sens. J. 12, 2898–2904 (2012).

    Article  Google Scholar 

  31. Hurley, M. V. & Bearne, L. M. Non-exercise physical therapies for musculoskeletal conditions. Best Pract. Res. Clin. Rheumatol. 22, 419–433 (2008).

    Article  Google Scholar 

  32. Sarzi-Puttini, P. et al. Osteoarthritis: an overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 35 (Suppl. 1), 1–10 (2005).

    Article  Google Scholar 

  33. Xu, B. et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016).

    Article  CAS  Google Scholar 

  34. Lim, S. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25, 375–383 (2015).

    Article  CAS  Google Scholar 

  35. Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. & Dewald, J. P. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl Acad. Sci. USA 104, 20061–20066 (2007).

    Article  CAS  Google Scholar 

  36. Lee, S. et al. A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat. Commun. 5, 5898 (2014).

    Article  CAS  Google Scholar 

  37. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  Google Scholar 

  38. Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 53, 432–438 (2014).

    CAS  Google Scholar 

  39. Pham, T. & Sun, W. Comparison of biaxial mechanical properties of coronary sinus tissues from porcine, ovine and aged human species. J. Mech. Behav. Biomed. Mater. 6, 21–29 (2012).

    Article  CAS  Google Scholar 

  40. Smits, F. M. Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 37, 711–718 (1958).

    Article  Google Scholar 

Download references


This work was supported by the Institute for Basic Science (grant numbers IBS-R006-D1 and IBS-R006-A1). The authors thank the staff of the National Center for Inter-university Research Facilities (NCIRF) and the Research Institute of Advanced Materials (RIAM) in Seoul National University. The authors also thank M. Josephson for material and intellectual support of the animal research.

Author information

Authors and Affiliations



S.C., S.I.H., D.J., H.J.H., T.H. and D.-H.K. designed the experiments. S.C., S.I.H., D.J., C.L., M.L., H.J.H., T.H. and D.-H.K. performed experiments and analysis. S.C., S.I.H., D.J., H.J.H., C.L., S.B., O.K.P., C.M.T., S.Y.B., S.-W.L., K.P., P.M.K. and R.N. performed in vivo animal experiments and data analysis. S.I.H., S.-W.L. and K.P. performed in vitro experiments and analysis. J.W.Y., J.H.R. and W.B.L. performed computer simulations. S.C., S.I.H., D.J., H.J.H., S.B., T.H. and D.-H.K. wrote the paper.

Corresponding authors

Correspondence to Taeghwan Hyeon or Dae-Hyeong Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–15, Supplementary References

Supplementary Video

The heat rolling-pressed Ag–Au nanocomposite was stretched to 200%, 400% and 840%

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Han, S.I., Jung, D. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotech 13, 1048–1056 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research