Interacting polariton fluids in a monolayer of tungsten disulfide

Abstract

Atomically thin transition metal dichalcogenides (TMDs) possess a number of properties that make them attractive for realizing room-temperature polariton devices1. An ideal platform for manipulating polariton fluids within monolayer TMDs is that of Bloch surface waves, which confine the electric field to a small volume near the surface of a dielectric mirror2,3,4. Here we demonstrate that monolayer tungsten disulfide can sustain Bloch surface wave polaritons (BSWPs) with a Rabi splitting of 43 meV and propagation lengths reaching 33 μm. In addition, we show strong polariton–polariton nonlinearities within BSWPs, which manifest themselves as a reversible blueshift of the lower polariton resonance. Such nonlinearities are at the heart of polariton devices5,6,7,8,9,10,11 and have not yet been demonstrated in TMD polaritons. As a proof of concept, we use the nonlinearity to implement a nonlinear polariton source. Our results demonstrate that BSWPs using TMDs can support long-range propagation combined with strong nonlinearities, enabling potential applications in integrated optical processing and polaritonic circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sample structure and monolayer characterization.
Fig. 2: BSW polaritons.
Fig. 3: Polariton propagation.
Fig. 4: Nonlinear behaviour.

References

  1. 1.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Lerario, G. et al. Room temperature Bloch surface wave polaritons. Opt. Lett. 39, 2068–2071 (2014).

    Article  Google Scholar 

  3. 3.

    Pirotta, S. et al. Strong coupling between excitons in organic semiconductors and Bloch surface waves. Appl. Phys. Lett. 104, 051111 (2014).

    Article  Google Scholar 

  4. 4.

    Lerario, G. et al. High-speed flow of interacting organic polaritons. Light Sci. Appl. 6, e16212 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, S279 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon 4, 361–366 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

    Article  Google Scholar 

  9. 9.

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Daskalakis, K., Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

    Article  Google Scholar 

  13. 13.

    Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Flatten, L. C. et al. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 8, 14097 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Flatten, L. C. et al. Room-temperature exciton–polaritons with two-dimensional WS2. Sci. Rep. 6, 33134 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Wang, S. et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano. Lett. 16, 4368–4374 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Liu, W. et al. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano. Lett. 16, 1262–1269 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Lundt, N. et al. Room-temperature Tamm-plasmon exciton–polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

    Article  Google Scholar 

  23. 23.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  Google Scholar 

  24. 24.

    Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano. Lett. 13, 3447–3454 (2013).

    Article  Google Scholar 

  25. 25.

    Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015).

    Article  Google Scholar 

  26. 26.

    Cong, C., Shang, J., Wang, Y. & Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018).

    Article  Google Scholar 

  27. 27.

    Scuri, G. et al. Large excitonic reflectivity of monolayer mose2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    Article  Google Scholar 

  28. 28.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Hoshi, Y. et al. Suppression of exciton–exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 95, 241403 (2017).

    Article  Google Scholar 

  30. 30.

    Angelini, A. et al. Focusing and extraction of light mediated by Bloch surface waves. Sci. Rep. 4, 5428 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

S.K.C. acknowledges support from the NSERC Discovery and SPG Grant Programs and the Canada Research Chair in Hybrid and Molecular Photonics. F.B. acknowledges support from the FQRNT PBEEE scholarship programme. L.M. acknowledges financial support from the NSERC Discovery Grant. Work at the City University of New York was supported by the National Science Foundation (NSF) under the EFRI 2-DARE programme (EFMA-1542863) and NSF-ECCS-1509551 grant. A.F., D.B. and D.S. acknowledge ERC ElecOpteR grant no. 780757. S.K.C., F.B., D.B. and D.S. acknowledge support from the mixed Québec–Italy Sub-commission for Bilateral Collaboration.

Author information

Affiliations

Authors

Contributions

S.K.C., D.B. and D.S. conceived the project and F.B. designed the sample. The sample was fabricated by F.B., S.H., J.G. and B.C. under the supervision of L.M., S.K.-C. and V.M. Optical experiments were performed by F.B., A.F. and D.B. F.B. analysed the data and wrote the manuscript. Numerical calculations were performed by F.B. and S.K.C. All authors contributed to revising the manuscript and analysing the results. D.B., D.S. and S.K.C. coordinated the project.

Corresponding authors

Correspondence to Dario Ballarini or Stéphane Kéna-Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Supplementary Figures 1–9

Supplementary Video 1

Energy dispersion for varying fluence

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barachati, F., Fieramosca, A., Hafezian, S. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nature Nanotech 13, 906–909 (2018). https://doi.org/10.1038/s41565-018-0219-7

Download citation

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research