Abstract

Atomically thin transition metal dichalcogenides (TMDs) possess a number of properties that make them attractive for realizing room-temperature polariton devices1. An ideal platform for manipulating polariton fluids within monolayer TMDs is that of Bloch surface waves, which confine the electric field to a small volume near the surface of a dielectric mirror2,3,4. Here we demonstrate that monolayer tungsten disulfide can sustain Bloch surface wave polaritons (BSWPs) with a Rabi splitting of 43 meV and propagation lengths reaching 33 μm. In addition, we show strong polariton–polariton nonlinearities within BSWPs, which manifest themselves as a reversible blueshift of the lower polariton resonance. Such nonlinearities are at the heart of polariton devices5,6,7,8,9,10,11 and have not yet been demonstrated in TMD polaritons. As a proof of concept, we use the nonlinearity to implement a nonlinear polariton source. Our results demonstrate that BSWPs using TMDs can support long-range propagation combined with strong nonlinearities, enabling potential applications in integrated optical processing and polaritonic circuits.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

  2. 2.

    Lerario, G. et al. Room temperature Bloch surface wave polaritons. Opt. Lett. 39, 2068–2071 (2014).

  3. 3.

    Pirotta, S. et al. Strong coupling between excitons in organic semiconductors and Bloch surface waves. Appl. Phys. Lett. 104, 051111 (2014).

  4. 4.

    Lerario, G. et al. High-speed flow of interacting organic polaritons. Light Sci. Appl. 6, e16212 (2017).

  5. 5.

    Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, S279 (2003).

  6. 6.

    Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

  7. 7.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon 4, 361–366 (2010).

  8. 8.

    Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

  9. 9.

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

  10. 10.

    Daskalakis, K., Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

  11. 11.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

  12. 12.

    Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

  13. 13.

    Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2017).

  14. 14.

    Flatten, L. C. et al. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 8, 14097 (2017).

  15. 15.

    Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

  16. 16.

    Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

  17. 17.

    Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

  18. 18.

    Flatten, L. C. et al. Room-temperature exciton–polaritons with two-dimensional WS2. Sci. Rep. 6, 33134 (2016).

  19. 19.

    Wang, S. et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano. Lett. 16, 4368–4374 (2016).

  20. 20.

    Liu, W. et al. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano. Lett. 16, 1262–1269 (2016).

  21. 21.

    Lundt, N. et al. Room-temperature Tamm-plasmon exciton–polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016).

  22. 22.

    Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

  23. 23.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

  24. 24.

    Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano. Lett. 13, 3447–3454 (2013).

  25. 25.

    Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015).

  26. 26.

    Cong, C., Shang, J., Wang, Y. & Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018).

  27. 27.

    Scuri, G. et al. Large excitonic reflectivity of monolayer mose2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

  28. 28.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

  29. 29.

    Hoshi, Y. et al. Suppression of exciton–exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 95, 241403 (2017).

  30. 30.

    Angelini, A. et al. Focusing and extraction of light mediated by Bloch surface waves. Sci. Rep. 4, 5428 (2014).

Download references

Acknowledgements

S.K.C. acknowledges support from the NSERC Discovery and SPG Grant Programs and the Canada Research Chair in Hybrid and Molecular Photonics. F.B. acknowledges support from the FQRNT PBEEE scholarship programme. L.M. acknowledges financial support from the NSERC Discovery Grant. Work at the City University of New York was supported by the National Science Foundation (NSF) under the EFRI 2-DARE programme (EFMA-1542863) and NSF-ECCS-1509551 grant. A.F., D.B. and D.S. acknowledge ERC ElecOpteR grant no. 780757. S.K.C., F.B., D.B. and D.S. acknowledge support from the mixed Québec–Italy Sub-commission for Bilateral Collaboration.

Author information

Affiliations

  1. Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec, Canada

    • Fábio Barachati
    • , Soroush Hafezian
    • , Ludvik Martinu
    •  & Stéphane Kéna-Cohen
  2. CNR - NANOTEC, Istituto di Nanotecnologia, Lecce, Italy

    • Antonio Fieramosca
    • , Dario Ballarini
    •  & Daniele Sanvitto
  3. Department of Physics, City College & Graduate Center of the City University of New York, New York, NY, USA

    • Jie Gu
    • , Biswanath Chakraborty
    •  & Vinod Menon
  4. INFN, Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy

    • Daniele Sanvitto

Authors

  1. Search for Fábio Barachati in:

  2. Search for Antonio Fieramosca in:

  3. Search for Soroush Hafezian in:

  4. Search for Jie Gu in:

  5. Search for Biswanath Chakraborty in:

  6. Search for Dario Ballarini in:

  7. Search for Ludvik Martinu in:

  8. Search for Vinod Menon in:

  9. Search for Daniele Sanvitto in:

  10. Search for Stéphane Kéna-Cohen in:

Contributions

S.K.C., D.B. and D.S. conceived the project and F.B. designed the sample. The sample was fabricated by F.B., S.H., J.G. and B.C. under the supervision of L.M., S.K.-C. and V.M. Optical experiments were performed by F.B., A.F. and D.B. F.B. analysed the data and wrote the manuscript. Numerical calculations were performed by F.B. and S.K.C. All authors contributed to revising the manuscript and analysing the results. D.B., D.S. and S.K.C. coordinated the project.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Dario Ballarini or Stéphane Kéna-Cohen.

Supplementary information

  1. Supplementary Information

    Supplementary Text and Supplementary Figures 1–9

  2. Supplementary Video 1

    Energy dispersion for varying fluence

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0219-7