Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials

Abstract

Centralized water treatment has dominated in developed urban areas over the past century, although increasing challenges with this model demand a shift to a more decentralized approach wherein advanced oxidation processes (AOPs) can be appealing treatment options. Efforts to overcome the fundamental obstacles that have thus far limited the practical use of traditional AOPs, such as reducing their chemical and energy input demands, target the utilization of heterogeneous catalysts. Specifically, recent advances in nanotechnology have stimulated extensive research investigating engineered nanomaterial (ENM) applications to AOPs. In this Perspective, we critically evaluate previously studied ENM catalysts and the next-generation treatment technologies they seek to enable. Opportunities for improvement exist at the intersection of materials science and treatment process engineering, as future research should aim to enhance catalyst properties while considering the unique roadblocks to practical ENM implementation in water treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Advanced oxidation in decentralized water treatment.
Fig. 2: ENM-enabled peroxy-based AOPs.
Fig. 3: ENM-enabled photocatalytic AOPs.
Fig. 4: ENM-enabled electrochemical AOPs.
Fig. 5: Challenges and prospects for ENM-based AOPs in water treatment.

Similar content being viewed by others

References

  1. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines (UNICEF/WHO, 2017).

  2. Zodrow, K. R. et al. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environ. Sci. Technol. 51, 10274–10281 (2017). This paper motivates the decentralization of water treatment models and recognizes opportunities to employ AOPs in such systems.

    Article  CAS  Google Scholar 

  3. National Research Council. Drinking Water Distribution Systems: Assessing and Reducing Risks 142–191 (The National Academies Press, 2006).

  4. McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 108, 6312–6317 (2011). This paper demonstrates significant challenges to current and future water treatment supplies.

    Article  CAS  Google Scholar 

  5. Peter-Varbanets, M., Zurbrügg, C., Swartz, C. & Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 43, 245–265 (2009).

    Article  CAS  Google Scholar 

  6. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  CAS  Google Scholar 

  7. Glaze, W. H., Kang, J.-W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone-Sci. Eng. 9, 335–352 (1987).

    Article  CAS  Google Scholar 

  8. Gassie, L. W. & Englehardt, J. D. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: a review. Water Res. 125, 384–399 (2017).

    Article  CAS  Google Scholar 

  9. Sun, H. et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Inter. 4, 5466–5471 (2012).

    Article  CAS  Google Scholar 

  10. Tan, C., Xiang, B., Li, Y., Fang, J. & Huang, M. Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment. Chem. Eng. J. 166, 15–21 (2011).

    Article  CAS  Google Scholar 

  11. Barazesh, J. M., Prasse, C. & Sedlak, D. L. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol. 50, 10143–10152 (2016).

    Article  CAS  Google Scholar 

  12. Qu, X., Alvarez, P. J. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013).

    Article  CAS  Google Scholar 

  13. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018). This paper explores how nanotechnology can be implemented to sustainably enhance water treatment strategies.

    Article  Google Scholar 

  14. Weng, Z. et al. Surfactant-free porous nano-Mn3O4 as a recyclable Fenton-like reagent that can rapidly scavenge phenolics without H2O2. J. Mater. Chem. A 5, 15650–15660 (2017).

    Article  CAS  Google Scholar 

  15. Kuan, C.-C., Chang, S.-Y. & Schroeder, S. L. M. Fenton-like oxidation of 4-chlorophenol: homogeneous or heterogeneous? Ind. Eng. Chem. Res. 54, 8122–8129 (2015).

    Article  CAS  Google Scholar 

  16. Makhotkina, O. A., Preis, S. V. & Parkhomchuk, E. V. Water delignification by advanced oxidation processes: homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions. Appl. Catal. B 84, 821–826 (2008).

    Article  CAS  Google Scholar 

  17. Yang, X.-j., Xu, X.-m., Xu, J. & Han, Y.-f. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 135, 16058–16061 (2013).

    Article  CAS  Google Scholar 

  18. Sun, M. et al. Reinventing Fenton chemistry: iron oxychloride nanosheet for pH-insensitive H2O2 activation. Environ. Sci. Technol. Lett 5, 186–191 (2018).

    Article  CAS  Google Scholar 

  19. Wang, R. et al. Fe3O4/SiO2/C nanocomposite as a high-performance Fenton-like catalyst in a neutral environment. RSC Adv. 6, 8594–8600 (2016).

    Article  CAS  Google Scholar 

  20. Yang, X. et al. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system. Sci. Rep. 5, 10632 (2015).

    Article  Google Scholar 

  21. Feng, J., Hu, X. & Yue, P. L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res. 40, 641–646 (2006).

    Article  CAS  Google Scholar 

  22. Plakas, K. V. et al. Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: pilot-scale studies. Water Res. 91, 183–194 (2016).

    Article  CAS  Google Scholar 

  23. von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37, 1443–1467 (2003).

    Article  CAS  Google Scholar 

  24. Nawrocki, J. Catalytic ozonation in water: controversies and questions. Discussion paper. Appl. Catal. B Environ. 142-143, 465–471 (2013).

    Article  CAS  Google Scholar 

  25. Song, S. et al. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol. Environ. Sci. Technol. 44, 3913–3918 (2010).

    Article  CAS  Google Scholar 

  26. Jung, H. & Choi, H. Catalytic decomposition of ozone and para-chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl. Catal. B Environ. 66, 288–294 (2006).

    Article  CAS  Google Scholar 

  27. Jung, H. et al. Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ. Sci. Technol. 41, 4741–4747 (2007).

    Article  CAS  Google Scholar 

  28. Dong, Y., Yang, H., He, K., Song, S. & Zhang, A. β-MnO2 nanowires: a novel ozonation catalyst for water treatment. Appl. Catal. B Environ. 85, 155–161 (2009).

    Article  CAS  Google Scholar 

  29. Liu, Z.-Q., Ma, J., Cui, Y.-H. & Zhang, B.-P. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube. Appl. Catal. B 92, 301–306 (2009).

    Article  CAS  Google Scholar 

  30. Yang, Y., Ma, J., Qin, Q. & Zhai, X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J. Mol. Catal. A Chem. 267, 41–48 (2007).

    Article  CAS  Google Scholar 

  31. Kasprzyk-Hordern, B., Ziółek, M. & Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 46, 639–669 (2003).

    Article  CAS  Google Scholar 

  32. Zhao, H. et al. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chem. Eng. J. 219, 295–302 (2013).

    Article  CAS  Google Scholar 

  33. Zhang, T. et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol. 48, 5868–5875 (2014).

    Article  CAS  Google Scholar 

  34. Chen, X., Chen, J., Qiao, X., Wang, D. & Cai, X. Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B 80, 116–121 (2008).

    Article  CAS  Google Scholar 

  35. Liang, H. et al. Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl. Catal. B 127, 330–335 (2012).

    Article  CAS  Google Scholar 

  36. Yang, Q., Choi, H. & Dionysiou, D. D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B 74, 170–178 (2007).

    Article  CAS  Google Scholar 

  37. Lee, H. et al. Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 266, 28–33 (2015).

    Article  CAS  Google Scholar 

  38. Duan, X., Sun, H., Wang, Y., Kang, J. & Wang, S. N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 5, 553–559 (2015).

    Article  CAS  Google Scholar 

  39. Ahn, Y.-Y. et al. Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds. Environ. Sci. Technol. 50, 10187–10197 (2016).

    Article  CAS  Google Scholar 

  40. Lee, H. et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ. Sci. Technol. 50, 10134–10142 (2016).

    Article  CAS  Google Scholar 

  41. Duan, X., Sun, H. & Wang, S. Comment on “Activation of persulfate by graphitized nanodiamonds for removal of organic compounds”. Environ. Sci. Technol. 51, 5351–5352 (2017).

    Article  CAS  Google Scholar 

  42. Lee, H., Lee, C. & Kim, J.-H. Response to comment on “Activation of persulfate by graphitized nanodiamonds for removal of organic compounds”. Environ. Sci. Technol. 51, 5353–5354 (2017).

    Article  CAS  Google Scholar 

  43. Yun, E.-T. et al. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: simultaneous decolorization of dyes and production of oxidizing radicals. Appl. Catal. B 203, 475–484 (2017).

    Article  CAS  Google Scholar 

  44. Lee, H. et al. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. Environ. Sci. Technol. 48, 8086–8093 (2014).

    Article  CAS  Google Scholar 

  45. Peralta-Hernández, J. M. et al. In situ electrochemical and photo-electrochemical generation of the Fenton reagent: a potentially important new water treatment technology. Water Res. 40, 1754–1762 (2006).

    Article  CAS  Google Scholar 

  46. Barazesh, J. M., Hennebel, T., Jasper, J. T. & Sedlak, D. L. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Environ. Sci. Technol. 49, 7391–7399 (2015).

    Article  CAS  Google Scholar 

  47. Mousset, E., Wang, Z., Hammaker, J. & Lefebvre, O. Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater. Electrochim. Acta 214, 217–230 (2016).

    Article  CAS  Google Scholar 

  48. Kim, H.-i., Choi, Y., Hu, S., Choi, W. & Kim, J.-H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B 229, 121–129 (2018).

    Article  CAS  Google Scholar 

  49. Huang, B. et al. Pd/Fe3O4 nanocatalysts for highly effective and simultaneous removal of humic acids and Cr(VI) by electro-Fenton with H2O2 in situ electro-generated on the catalyst surface. J. Catal. 352, 337–350 (2017).

    Article  CAS  Google Scholar 

  50. Yuan, S., Fan, Y., Zhang, Y., Tong, M. & Liao, P. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of Rhodamine B. Environ. Sci. Technol. 45, 8514–8520 (2011).

    Article  CAS  Google Scholar 

  51. Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T. & Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003).

    Article  CAS  Google Scholar 

  52. Cates, E. L. Photocatalytic water treatment: so where are we going with this? Environ. Sci. Technol. 51, 757–758 (2017).

    Article  CAS  Google Scholar 

  53. Santoro, D., Crapulli, F., Turolla, A. & Antonelli, M. Detailed modeling of oxalic acid degradation by UV-TiO2 nanoparticles: importance of light scattering and photoreactor scale-up. Water Res. 121, 361–373 (2017).

    Article  CAS  Google Scholar 

  54. Lee, J. & Choi, W. Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 109, 7399–7406 (2005).

    Article  CAS  Google Scholar 

  55. Subramanian, V., Wolf, E. E. & Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004).

    Article  CAS  Google Scholar 

  56. Jiang, Y., Wang, W.-N., Biswas, P. & Fortner, J. D. Facile aerosol synthesis and characterization of ternary crumpled graphene–TiO2–magnetite nanocomposites for advanced water treatment. ACS Appl. Mater. Inter. 6, 11766–11774 (2014).

    Article  CAS  Google Scholar 

  57. Sun, J., Zhang, H., Guo, L.-H. & Zhao, L. Two-dimensional interface engineering of a titania–graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Inter. 5, 13035–13041 (2013).

    Article  CAS  Google Scholar 

  58. Du, J. et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590–596 (2011).

    Article  CAS  Google Scholar 

  59. Radich, J. G., Krenselewski, A. L., Zhu, J. & Kamat, P. V. Is graphene a stable platform for photocatalysis? Mineralization of reduced graphene oxide with UV-irradiated TiO2 nanoparticles. Chem. Mater. 26, 4662–4668 (2014).

    Article  CAS  Google Scholar 

  60. El-Sheikh, S. M. et al. Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chem. Eng. J. 310, 428–436 (2017).

    Article  CAS  Google Scholar 

  61. Xu, H. & Zhang, L. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C. 113, 1785–1790 (2009).

    Article  CAS  Google Scholar 

  62. Kaplan, R., Erjavec, B., Dražić, G., Grdadolnik, J. & Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B 181, 465–474 (2016).

    Article  CAS  Google Scholar 

  63. Cao, Y. et al. Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl. Catal. B 180, 551–558 (2016).

    Article  CAS  Google Scholar 

  64. Ao, Y., Wang, K., Wang, P., Wang, C. & Hou, J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Appl. Catal. B 194, 157–168 (2016).

    Article  CAS  Google Scholar 

  65. Cao, J., Xu, B., Lin, H. & Chen, S. Highly improved visible light photocatalytic activity of BiPO4 through fabricating a novel p–n heterojunction BiOI/BiPO4 nanocomposite. Chem. Eng. J. 228, 482–488 (2013).

    Article  CAS  Google Scholar 

  66. Li, J., Yu, Y. & Zhang, L. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014).

    Article  CAS  Google Scholar 

  67. Yosefi, L. & Haghighi, M. Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation. Appl. Catal. B 220, 367–378 (2018).

    Article  CAS  Google Scholar 

  68. Sang, Y. et al. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27, 363–369 (2015).

    Article  CAS  Google Scholar 

  69. Zhang, C. & Zhu, Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005).

    Article  CAS  Google Scholar 

  70. Wang, J. et al. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B 209, 285–294 (2017).

    Article  CAS  Google Scholar 

  71. Liu, Z. et al. Rational design of wide spectral-responsive heterostructures of Au nanorod coupled Ag3PO4 with enhanced photocatalytic performance. ACS Appl. Mater. Inter. 9, 20620–20629 (2017).

    Article  CAS  Google Scholar 

  72. Jiang, Z., Zhu, C., Wan, W., Qian, K. & Xie, J. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. 4, 1806–1818 (2016).

    Article  CAS  Google Scholar 

  73. Liu, J. et al. Carbon nitride supramolecular hybrid material enabled high-efficiency photocatalytic water treatments. Nano Lett. 16, 6568–6575 (2016).

    Article  CAS  Google Scholar 

  74. Zheng, Q. et al. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment. Environ. Sci. Technol. 50, 12938–12948 (2016).

    Article  CAS  Google Scholar 

  75. Choi, M. et al. Investigating the unrevealed photocatalytic activity and stability of nanostructured brookite TiO2 film as an environmental photocatalyst. ACS Appl. Mater. Inter. 9, 16252–16260 (2017).

    Article  CAS  Google Scholar 

  76. Pan, C. & Zhu, Y. New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570–5574 (2010).

    Article  CAS  Google Scholar 

  77. Pan, C. & Zhu, Y. Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance. J. Mater. Chem. 21, 4235–4241 (2011).

    Article  CAS  Google Scholar 

  78. Tian, X., Xu, T., Wang, Y. & Meng, S. Hierarchical h-, m- and n-BiPO4 microspheres: facile synthesis and application in the photocatalytic decomposition of refractory phenols and benzene. RSC Adv. 7, 36705–36713 (2017).

    Article  CAS  Google Scholar 

  79. Pan, C. & Zhu, Y. A review of BiPO4, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catal. Sci. Technol. 5, 3071–3083 (2015).

    Article  CAS  Google Scholar 

  80. Radjenovic, J. & Sedlak, D. L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292–11302 (2015).

    Article  CAS  Google Scholar 

  81. Ghernaout, D., Naceur, M. W. & Aouabed, A. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination 270, 9–22 (2011).

    Article  CAS  Google Scholar 

  82. Anglada, Á., Urtiaga, A., Ortiz, I., Mantzavinos, D. & Diamadopoulos, E. Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res. 45, 828–838 (2011).

    Article  CAS  Google Scholar 

  83. Xie, R. et al. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: reaction kinetics and mass transfer impact. Appl. Catal. B 203, 515–525 (2017).

    Article  CAS  Google Scholar 

  84. Garcia-Segura, S., dos Santos, E. V. & Mart¡nez-Huitle, C. A. Role of sp 3/sp 2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59, 52–55 (2015).

    Article  CAS  Google Scholar 

  85. Wu, W., Huang, Z.-H. & Lim, T.-T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A 480, 58–78 (2014).

    Article  CAS  Google Scholar 

  86. Cui, X. et al. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Mater. Chem. Phys. 113, 314–321 (2009).

    Article  CAS  Google Scholar 

  87. Zhao, W., Xing, J., Chen, D., Bai, Z. & Xia, Y. Study on the performance of an improved Ti/SnO2-Sb2O3/PbO2 based on porous titanium substrate compared with planar titanium substrate. RSC Adv. 5, 26530–26539 (2015).

    Article  CAS  Google Scholar 

  88. Geng, P., Su, J., Miles, C., Comninellis, C. & Chen, G. Highly-ordered Magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochim. Acta 153, 316–324 (2015).

    Article  CAS  Google Scholar 

  89. Kim, C., Kim, S., Hong, S. P., Lee, J. & Yoon, J. Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties. Phys. Chem. Chem. Phys. 18, 14370–14375 (2016).

    Article  CAS  Google Scholar 

  90. Zhao, G. et al. Construction and high performance of a novel modified boron-doped diamond film electrode endowed with superior electrocatalysis. J. Phys. Chem. C. 114, 5906–5913 (2010).

    Article  CAS  Google Scholar 

  91. Ding, X. et al. Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism. Water Res. 112, 9–18 (2017).

    Article  CAS  Google Scholar 

  92. Li, Y. et al. Synergistic degradation of antimicrobial agent ciprofloxacin in water by using 3D CeO2/RGO composite as cathode in electro-Fenton system. J. Electroanal. Chem. 784, 6–12 (2017).

    Article  CAS  Google Scholar 

  93. Zhu, R., Yang, C., Zhou, M. & Wang, J. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor. Chem. Eng. J. 260, 427–433 (2015).

    Article  CAS  Google Scholar 

  94. Sonoyama, N. & Sakata, T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 33, 3438–3442 (1999).

    Article  CAS  Google Scholar 

  95. Duan, W., Ronen, A., Walker, S. & Jassby, D. Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS Appl. Mater. Inter. 8, 22574–22584 (2016).

    Article  CAS  Google Scholar 

  96. Yanez, H. J. E. et al. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles. Water Res. 108, 78–85 (2017).

    Article  CAS  Google Scholar 

  97. Chaplin, B. P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci. Proc. Imp. 16, 1182–1203 (2014).

    CAS  Google Scholar 

  98. Westerhoff, P., Aiken, G., Amy, G. & Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33, 2265–2276 (1999).

    Article  CAS  Google Scholar 

  99. Brame, J., Long, M., Li, Q. & Alvarez, P. Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res. 60, 259–266 (2014).

    Article  CAS  Google Scholar 

  100. Brame, J., Long, M., Li, Q. & Alvarez, P. Inhibitory effect of natural organic matter or other background constituents on photocatalytic advanced oxidation processes: Mechanistic model development and validation. Water Res. 84, 362–371 (2015).

    Article  CAS  Google Scholar 

  101. Wang, X. et al. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl. Mater. Inter. 8, 9080–9087 (2016).

    Article  CAS  Google Scholar 

  102. Wang, Y., Zhao, H., Li, M., Fan, J. & Zhao, G. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl. Catal. B Environ. 147, 534–545 (2014).

    Article  CAS  Google Scholar 

  103. Zhang, C.-F. et al. A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A 1, 14329–14334 (2013).

    Article  CAS  Google Scholar 

  104. Xu, Y., He, Y., Cao, X., Zhong, D. & Jia, J. TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ. Sci. Technol. 42, 2612–2617 (2008).

    Article  CAS  Google Scholar 

  105. Ling, L. et al. Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ. Sci. Technol. 51, 13319–13326 (2017).

    Article  CAS  Google Scholar 

  106. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx . Nat. Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  107. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotech. 11, 1098–1104 (2016).

    Article  CAS  Google Scholar 

  108. Loeb, S., Hofmann, R. & Kim, J.-H. Beyond the pipeline: assessing the efficiency limits of advanced technologies for solar water disinfection. Environ. Sci. Technol. Lett. 3, 73–80 (2016).

    Article  CAS  Google Scholar 

  109. Shao, T., Zhang, P., Jin, L. & Li, Z. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Appl. Catal. B 142-143, 654–661 (2013).

    Article  CAS  Google Scholar 

  110. Appleman, T. D. et al. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 51, 246–255 (2014).

    Article  CAS  Google Scholar 

  111. Adeleye, A. S. et al. Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem. Eng. J. 286, 640–662 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the US National Science Foundation (NSF) through the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (grant EEC-1449500). B.C.H. was funded by the NSF Graduate Research Fellowship (grant no. DGE-0644492).

Author information

Authors and Affiliations

Authors

Contributions

B.C.H. and E.L.C. wrote a draft that was scrutinized and improved by all the authors.

Corresponding author

Correspondence to Jae-Hong Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodges, B.C., Cates, E.L. & Kim, JH. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotech 13, 642–650 (2018). https://doi.org/10.1038/s41565-018-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0216-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing