Nanosensors for water quality monitoring


Nanomaterial-enabled sensors are being designed for high-efficiency, multiplex-functionality and high-flexibility sensing applications. Many existing nanosensors have the inherent capacity to achieve such goals; however, they require further development into consumer- and operator-friendly tools with the ability to detect analytes in previously inaccessible locations, as well as at a greater scale than heretofore possible. Here, I discuss how nanotechnology-enabled sensors have great, as yet unmet, promise to provide widespread and potentially low-cost monitoring of chemicals, microbes and other analytes in drinking water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Representative optical, electrical, magnetic and mechanical nanosensor platforms.
Fig. 2: Internet of Things (IoT)-enabled water sensing both within the distribution system and at selected points within premise plumbing.


  1. 1.

    Vitruvius. De Architectura (translated by Morgan, M. H.) (Harvard Univ. Press, Cambridge, MA, 1914).

  2. 2.

    Progress on Drinking Water, Sanitation, and Hygiene: 2017 Update and SDG Baselines (WHO/UNICEF, 2017).

  3. 3.

    Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

  4. 4.

    Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

  5. 5.

    Qu, X. L., Brame, J., Li, Q. L. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013).

  6. 6.

    Bhattacharyya, S. et al. Nanotechnology in the water industry, part 1: Occurrence and risks. J. Am. Water Works Assoc. 109, 30–37 (2017).

  7. 7.

    Farahi, R. H., Passian, A., Tetard, L. & Thundat, T. Critical issues in sensor science to aid food and water safety. ACS Nano 6, 4548–4556 (2012).

  8. 8.

    Standard Methods for the Examination of Water and Wastewater 22nd edn (American Public Health Association, American Water Works Association, Water Environment Federation, 2012).

  9. 9.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: Promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

  10. 10.

    Chandran, G. T., Li, X. W., Ogata, A. & Penner, R. M. Electrically transduced sensors based on nanomaterials (2012-2016). Anal. Chem. 89, 249–275 (2017).

  11. 11.

    Farka, Z., Juriik, T., Kovaar, D., Trnkova, L. & Sklaadal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 117, 9973–10042 (2017).

  12. 12.

    Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo-Escobar, D. & McLamore, E. S. Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Comp. Rev. Food Sci. Food Saf. 16, 1188–1205 (2017).

  13. 13.

    Vikesland, P. J. & Wigginton, K. R. Nanomaterial enabled biosensors for pathogen monitoring — a review. Environ. Sci. Technol. 44, 3656–3669 (2010).

  14. 14.

    Pol, R., Céspedes, F., Gabriel, D. & Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. Trends Anal. Chem. 95, 62–68 (2017).

  15. 15.

    Sriram, G. et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. Trends Anal. Chem. 93, 212–227 (2017).

  16. 16.

    Shelby, T., Sulthana, S., McAfee, J., Banerjee, T. & Santra, S. Foodborne pathogen screening using magneto-fluorescent nanosensor: Rapid detection of E. coli O157:H7. J. Vis. Exp. 127, e55821 (2017).

  17. 17.

    van den Hurk, R. & Evoy, S. A review of membrane-based biosensors for pathogen detection. Sens. (Basel) 15, 14045–14078 (2015).

  18. 18.

    Fadel, T. R. et al. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 1, 207–216 (2016).

  19. 19.

    Wang, C. & Yu, C. X. Detection of chemical pollutants in water using gold nanoparticles as sensors: A review. Rev. Anal. Chem. 32, 1–14 (2013).

  20. 20.

    Banholzer, M. J., Millstone, J. E., Qin, L. D. & Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

  21. 21.

    Ng, S.M., Koneswaran, M. & Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 6, 21624–21661 (2016).

  22. 22.

    Comparelli, R., Curri, M. L., Cozzoli, P. D. & Striccoli, M. in Nanotechnologies for the Life Sciences: Nanomaterials for Biosensors Vol. 8 (ed. Kumar, C. S. S. R.) 123–174 (Wiley-VCH, Weinheim, 2007).

  23. 23.

    Wei, H., Abtahi, S. M. H. & Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2, 120–135 (2015).

  24. 24.

    Kneipp, K., Wang, Y., Dasari, R. R. & Feld, M. S. Approach to single-molecule detection using surface-enhanced resonance Raman-scattering (SERRS) — a study using Rhodamine 6G on colloidal silver. Appl. Spectrosc. 49, 780–784 (1995).

  25. 25.

    Alvarez-Puebla, R. A. & Liz-Marzan, L. M. Traps and cages for universal SERS detection. Chem. Soc. Rev. 41, 43–51 (2012).

  26. 26.

    Giannoukos, S., Brkic, B., Taylor, S., Marshall, A. & Verbeck, G. F. Chemical sniffing instrumentation for security applications. Chem. Rev. 116, 8146–8172 (2016).

  27. 27.

    So, H. M. et al. Detection and titer estimation of Escherichia coli using aptamer‐functionalized single‐walled carbon‐nanotube field‐effect transistors. Small 4, 197–201 (2008).

  28. 28.

    Peterson, J. et al. Detection of hepatitis C core antigen in the antibody negative ‘window’phase of hepatitis C infection. Vox Sang. 78, 80–85 (2000).

  29. 29.

    Kudr, J. et al. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 7, 243 (2017).

  30. 30.

    Barroso, T. G. et al. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosens. Bioelectron. 100, 259–265 (2018).

  31. 31.

    Krishna, V. D., Wu, K., Perez, A. M. & Wang, J. P. Giant magnetoresistance-based biosensor for detection of influenza A virus. Front. Microbiol. 7, 400 (2016).

  32. 32.

    de la Torre, T. Z. G. et al. Sensitive detection of spores using volume-amplified magnetic nanobeads. Small 8, 2174–2177 (2012).

  33. 33.

    Chen, Y. et al. One-step detection of pathogens and viruses: Combining magnetic relaxation switching and magnetic separation. ACS Nano 9, 3184–3191 (2015).

  34. 34.

    Kumar, A. A. et al. From the bench to the field in low-cost diagnostics: Two case studies. Angew. Chem. Int. Ed. 54, 5835–5852 (2015).

  35. 35.

    Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

  36. 36.

    Huck, P. M. in Conflict Resolution in Water Resources and Environmental Management (eds Hipel, K. W. et al.) Ch. 8, 145–158 (Springer, Cham, 2015).

  37. 37.

    Westerhoff, P., Alvarez, P., Li, Q. L., Gardea-Torresdey, J. & Zimmerman, J. Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ. Sci. Nano 3, 1241–1253 (2016).

  38. 38.

    Crittenden, J., Trussell, R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. MWH’s Water Treatment: Principles and Design 3rd edn (Wiley, Hoboken, 2012).

  39. 39.

    Dai, D. et al. Factors shaping the human exposome in the built environment: Opportunities for engineering control. Environ. Sci. Technol. 51, 7759–7774 (2017).

  40. 40.

    National Research Council. Drinking Water Distribution Systems: Assessing and Reducing Risks (The National Academies Press, Washington, DC, 2006).

  41. 41.

    Flint Water Advisory Task Force — Final Report (Flint Water Advisory Task Force, 2016).

  42. 42.

    Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comp. Sy. 20, 1645–1660 (2013).

  43. 43.

    Wong, B. P. & Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. Environ. Modell. Softw. 84, 505–517 (2016).

  44. 44.

    Li, T., Xia, M., Chen, J. H., Zhao, Y. J. & de Silva, C. Automated water quality survey and evaluation using an IoT platform with mobile sensor nodes. Sensors 17, 1735 (2017).

  45. 45.

    Akyildiz, I.F. & Jornet, J. M. The internet of nano-things. IEEE Wirel. Commun. 17, 58–63 (2010).

  46. 46.

    Balasubramaniam, S. & Kangasharju, J. Realizing the internet of nano things: Challenges, solutions, and applications. Computer 46, 62–68 (2014).

  47. 47.

    Nayyar, A., Puri, V. & Le, D.-N. Internet of nano things (IoNT): Next evolutionary step in nanotechnology. Nanosci. Nanotechnol. 7, 4–8 (2017).

  48. 48.

    Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: Present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

  49. 49.

    Mazzocchi, R. A. Medical sensors — defining a pathway to commercialization. ACS Sens. 1, 1167–1170 (2016).

  50. 50.

    Koivisto, A. J. et al. Quantitative material releases from products and articles containing manufactured nanomaterials: Towards a release library. NanoImpact 5, 119–132 (2017).

  51. 51.

    National Research Council. Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (The National Academies Press, Washington, DC, 2012).

  52. 52.

    Ryu, H., Alum, A., Mena, K. D. & Abbaszadegan, M. Assessment of the risk of infection by Cryptosporidium and Giardia in non-potable reclaimed water. Water Sci. Technol. 55, 283–290 (2007).

  53. 53.

    Pruden, A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ. Sci. Technol. 48, 5–14 (2014).

  54. 54.

    Hollender, J., Schymanski, E. L., Singer, H. P. & Ferguson, P. L. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environ. Sci. Technol. 51, 11505–11512 (2017).

  55. 55.

    Gluge, J., Wang, Z. Y., Bogdal, C., Scheringer, M. & Hungerbuhler, K. Global production, use, and emission volumes of short-chain chlorinated paraffins — a minimum scenario. Sci. Total Environ. 573, 1132–1146 (2016).

  56. 56.

    Wang, Z. Y., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).

  57. 57.

    Bernhardt, E. S. et al. An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 39, 1954–1965 (2010).

  58. 58.

    da Costa, J. P., Santos, P. S. M., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the environment — sources, fates and effects. Sci. Total Environ. 566, 15–26 (2016).

  59. 59.

    Stapleton, H. M. et al. Detection of organophosphate flame retardants in furniture foam and US house dust. Environ. Sci. Technol. 43, 7490–7495 (2009).

  60. 60.

    Scheringer, M. Environmental chemistry and ecotoxicology: In greater demand than ever. Environ. Sci. Eur. 29, 3 (2017).

  61. 61.

    Deshmukh, R. A., Joshi, K., Bhand, S. & Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. Microbiologyopen 5, 901–922 (2016).

  62. 62.

    Guerrini, L., Garcia-Rico, E., Pazos-Perez, N. & Alvarez-Puebla, R. A. Smelling, seeing, tasting-old senses for new sensing. ACS Nano 11, 5217–5222 (2017).

  63. 63.

    Kim, S. J., Choi, S. J., Jang, J. S., Cho, H. J. & Kima, I. D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50, 1587–1596 (2017).

  64. 64.

    Nakhleh, M. K. et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11, 112–125 (2017).

  65. 65.

    Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

  66. 66.

    Giles, B. Finding Growth and Differentiation in Small-scale Water Treatment Markets (Lux Research, 2013).

  67. 67.

    Schmidt, W. P. & Cairncross, S. Household water treatment in poor populations: Is there enough evidence for scaling up now? Environ. Sci. Technol. 43, 986–992 (2009).

  68. 68.

    Fewtrell, L. et al. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 5, 42–52 (2005).

  69. 69.

    Pitta, D. A., Pitta, D., Guesalaga, R. & Marshall, P. The quest for the fortune at the bottom of the pyramid: Potential and challenges. J. Consum. Mark. 25, 393–401 (2008).

  70. 70.

    McLeod, E., Wei, Q. & Ozcan, A. Democratization of nanoscale imaging and sensing tools using photonics. Anal. Chem. 87, 6434–6445 (2015).

  71. 71.

    Nel, A. et al. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 46, 607–621 (2013).

  72. 72.

    Garner, K. L. & Keller, A. A. Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. J. Nanopart. Res. 16, 2503 (2014).

  73. 73.

    Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotech. (2018).

  74. 74.

    Daniel, W. L., Han, M. S., Lee, J.-S. & Mirkin, C. A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 131, 6362–6363 (2009).

  75. 75.

    Liu, J. & Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 118, 96–100 (2006).

  76. 76.

    Beqa, L. et al. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl. Mater. Interfaces 3, 668–673 (2011).

  77. 77.

    Zhang, Z., Chen, Z., Qu, C. & Chen, L. Highly sensitive visual detection of copper ions based on the shape-dependent lspr spectroscopy of gold nanorods. Langmuir 30, 3625–3630 (2014).

  78. 78.

    Vilela, D., González, M. C. & Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta 751, 24–43 (2012).

  79. 79.

    Algarra, M. et al. Thiolated DAB dendrimers and CdSe quantum dot nanocomposites for Cd(II) or Pb(II) sensing. Talanta 88, 403–407 (2012).

  80. 80.

    Li, M., Zhou, X., Guo, S. & Wu, N. Detection of lead(II) with a “turn-on” fluorescent biosensor based on energy transfer from CdS/ZnS quantum dots to graphene oxide. Biosens. Bioelectron. 43, 69–74 (2013).

  81. 81.

    Luan, W. et al. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead(II). J. Nanopart. Res. 14, 1–8 (2012).

  82. 82.

    Sung, T.-W. & Lo, Y.-L. Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens. Actuators B 165, 119–125 (2012).

  83. 83.

    Chao, M. R., Chang, Y. Z. & Chen, J. L. Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. Biosens. Bioelectron. 42, 397–402 (2013).

  84. 84.

    Gan, T. T. et al. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag(+). Spectrochim. Acta A 99, 62–68 (2012).

  85. 85.

    Gui, R. et al. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based off-on fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta 94, 257–262 (2012).

  86. 86.

    Liu, X.-Q. et al. Directional surface plasmon-coupled emission of CdTe quantum dots and its application in Hg(II) sensing. Anal. Meth. 4, 3956 (2012).

  87. 87.

    Wu, H., Liang, J. & Han, H. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim. Acta 161, 81–86 (2007).

  88. 88.

    Wang, Y. Q., Liu, Y., He, X. W., Li, W. Y. & Zhang, Y. K. Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. Talanta 99, 69–74 (2012).

  89. 89.

    Koneswaran, M. & Narayanaswamy, R. L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuators B 139, 104–109 (2009).

  90. 90.

    Ke, J., Li, X., Shi, Y., Zhao, Q. & Jiang, X. A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots. Nanoscale 4, 4996–5001 (2012).

  91. 91.

    Zhang, C. et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 55, 216–219 (2014).

  92. 92.

    Ackermann, K. R., Henkel, T. & Popp, J. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem A 8, 2665–2670 (2007).

  93. 93.

    Hadjigeorgiou, K., Kastanos, E. & Pitris, C. Multi-bacteria multi-antibiotic testing using surface enhanced raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis. in Clinical and Biomedical Spectroscopy and Imaging III (eds Deckert, V & Ramanujam, N.) vol. 8798, paper 87980L (2013).

  94. 94.

    Halvorson, R. A. & Vikesland, P. J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 44, 7749–7755 (2010).

  95. 95.

    Jarvis, R. M. & Goodacre, R. Characterisation and identification of bacteria using SERS. Chem. Soc. Rev. 37, 931–936 (2008).

  96. 96.

    Zhou, H. et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 86, 1525–1533 (2014).

  97. 97.

    Muratova, I. S., Mikhelson, K. N., Ermolenko, Y. E., Offenhausser, A. & Mourzina, Y. Chemiresistors based on ultrathin gold nanowires for sensing halides, pyridine and dopamine. Sens. Actuators B 232, 420–427 (2016).

  98. 98.

    Cho, S. Y. et al. High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds. Nano Lett. 16, 4508–4515 (2016).

  99. 99.

    Kim, J. H., Katoch, A., Kim, S. H. & Kim, S. S. Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core–shell nanowires. ACS Appl. Mater. Interfaces 7, 15351–15358 (2015).

  100. 100.

    Fennell, J. F. et al. Nanowire chemical/biological sensors: Status and a roadmap for the future. Angew. Chem. Int. Ed. 55, 1266–1281 (2016).

  101. 101.

    Kindra, L. R. et al. Lithographically patterned pedot nanowires for the detection of iron(III) with nanomolar sensitivity. Anal. Chem. 87, 11492–11500 (2015).

  102. 102.

    Kwon, O. S., Park, S. J., Yoon, H. & Jang, J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem. Commun. 48, 10526–10528 (2012).

  103. 103.

    Chen, S. & Sun, G. High sensitivity ammonia sensor using a hierarchical polyaniline/poly(ethylene-co-glycidyl methacrylate) nanofibrous composite membrane. ACS Appl. Mater. Interfaces 5, 6473–6477 (2013).

  104. 104.

    Gao, A. R. et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 12, 5262–5268 (2012).

  105. 105.

    Shen, F. X. et al. Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12, 3722–3730 (2012).

  106. 106.

    Jiang, S., Cheng, R., Ng, R., Huang, Y. & Duan, X. F. Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 8, 257–262 (2015).

  107. 107.

    Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).

  108. 108.

    Knopfmacher, O. et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014).

  109. 109.

    Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

  110. 110.

    Bandodkar, A. J., Jeerapan, I., You, J. M., Nunez-Flores, R. & Wang, J. Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: Combining intrinsic and design-induced stretchability. Nano Lett. 16, 721–727 (2016).

  111. 111.

    Gou, P. P., Kraut, N. D., Feigel, I. M. & Star, A. Rigid versus flexible ligands on carbon nanotubes for the enhanced sensitivity of cobalt ions. Macromolecules 46, 1376–1383 (2013).

  112. 112.

    Yu, G., Wu, W., Zhao, Q., Wei, X. & Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron. 68, 288–294 (2015).

  113. 113.

    Stortini, A. M., Moretto, L. M., Mardegan, A., Ongaro, M. & Ugo, P. Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B 207, 186–192 (2015).

  114. 114.

    Li, X. G., Zhang, J. L. & Huang, M. R. Chemical response of nanocomposite membranes of electroactive polydiaminonaphthalene nanoparticles to heavy metal ions. J. Phys. Chem. C. 118, 11990–11999 (2014).

  115. 115.

    Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139, 3055–3060 (2014).

  116. 116.

    Wu, K. et al. Portable GMR handheld platform for the detection of influenza A virus. ACS Sens. 2, 1594–1601 (2017).

  117. 117.

    Banerjee, T. et al. Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of Escherichia coli O157:H7. ACS Infect. Dis. 2, 667–673 (2016).

  118. 118.

    Wang, J. et al. Facile synthesis of au-coated magnetic nanoparticles and their application in bacteria detection via a sers method. ACS Appl. Mater. Interfaces 8, 19958–19967 (2016).

  119. 119.

    Yang, Y., Asiri, A. M., Du, D. & Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139, 3055–3060 (2014).

Download references


The author thanks his Virginia Tech colleagues L. Marr, M. Edwards and H. Wei for providing useful feedback on the manuscript, and thanks the US National Science Foundation (CBET-1705653, OISE-1545756 and CBET-1133746) and the Virginia Tech ICTAS Exposome Center for financial support. In addition, he thanks the McNeill laboratory at ETH-Zurich for providing a sabbatical home during which this Perspective was produced.

Author information

Correspondence to Peter J. Vikesland.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vikesland, P.J. Nanosensors for water quality monitoring. Nature Nanotech 13, 651–660 (2018) doi:10.1038/s41565-018-0209-9

Download citation

Further reading